Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3895-3907, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356175

RESUMO

Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.


Assuntos
Compostos de Bifenilo , Burkholderiaceae , Carvão Vegetal , Bifenilos Policlorados , Benzoatos , Biodegradação Ambiental , Carbono , Ecossistema , Bifenilos Policlorados/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo
2.
Environ Sci Technol ; 57(43): 16386-16398, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856784

RESUMO

Growth of organohalide-respiring bacteria such as Dehalococcoides mccartyi on halogenated organics (e.g., polychlorinated biphenyls (PCBs)) at contaminated sites or in enrichment culture requires interaction and support from other microbial community members. To evaluate naturally occurring interactions between Dehalococcoides and key supporting microorganisms (e.g., production of H2, acetate, and corrinoids) in PCB-contaminated sediments, metagenomic and metatranscriptomic sequencing was conducted on DNA and RNA extracted from sediment microcosms, showing evidence of both Dehalococcoides growth and PCB dechlorination. Using a genome-resolved approach, 160 metagenome-assembled genomes (MAGs), including three Dehalococcoides MAGs, were recovered. A novel reductive dehalogenase gene, distantly related to the chlorophenol dehalogenase gene cprA (pairwise amino acid identity: 23.75%), was significantly expressed. Using MAG gene expression data, 112 MAGs were assigned functional roles (e.g., corrinoid producers, acetate/H2 producers, etc.). A network coexpression analysis of all 160 MAGs revealed correlations between 39 MAGs and the Dehalococcoides MAGs. The network analysis also showed that MAGs assigned with functional roles that support Dehalococcoides growth (e.g., corrinoid assembly, and production of intermediates required for corrinoid synthesis) displayed significant coexpression correlations with Dehalococcoides MAGs. This work demonstrates the power of genome-resolved metagenomic and metatranscriptomic analyses, which unify taxonomy and function, in investigating the ecology of dehalogenating microbial communities.


Assuntos
Chloroflexi , Microbiota , Bifenilos Policlorados , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Chloroflexi/genética , Chloroflexi/química , Chloroflexi/metabolismo , Anaerobiose , Biodegradação Ambiental , Acetatos/metabolismo , Sedimentos Geológicos/análise
3.
Environ Sci Technol ; 56(20): 14338-14349, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178372

RESUMO

We conducted experiments to determine whether bioaugmentation with aerobic, polychlorinated biphenyl (PCB)-degrading microorganisms can mitigate polychlorinated biphenyl (PCB) emissions from contaminated sediment to air. Paraburkholderia xenovorans strain LB400 was added to bioreactors containing PCB-contaminated site sediment. PCB mass in both the headspace and aqueous bioreactor compartments was measured using passive samplers over 35 days. Time-series measurements of all 209 PCB congeners revealed a 57% decrease in total PCB mass accumulated in the vapor phase of bioaugmented treatments relative to non-bioaugmented controls, on average. A comparative congener-specific analysis revealed preferential biodegradation of lower-chlorinated PCBs (LC-PCBs) by LB400. Release of the most abundant congener (PCB 4 [2,2'-dichlorobiphenyl]) decreased by over 90%. Simulations with a PCB reactive transport model closely aligned with experimental observations. We also evaluated the effect of the phytogenic biosurfactant, saponin, on PCB bioavailability and biodegradation by LB400. Time-series qPCR measurements of biphenyl dioxygenase (bphA) genes showed that saponin better maintained bphA abundance, compared to the saponin-free treatment. These findings indicate that an active population of bioaugmented, aerobic PCB-degrading microorganisms can effectively lower PCB emissions and may therefore contribute to minimizing PCB inhalation exposure in communities surrounding PCB-contaminated sites.


Assuntos
Dioxigenases , Bifenilos Policlorados , Biodegradação Ambiental , Hidroxilaminas , Bifenilos Policlorados/metabolismo
4.
Appl Microbiol Biotechnol ; 106(18): 6335-6346, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36056199

RESUMO

Vinyl chloride (VC) is a common groundwater pollutant generated during anaerobic biodegradation of chlorinated solvents (e.g., trichloroethene (TCE) or tetrachloroethene (PCE)). Aerobic VC biodegradation by etheneotrophs can support anaerobic PCE and TCE bioremediation to achieve complete removal in situ. However, anaerobic bioremediation strategies necessitate biostimulation with electron donors that are fermented in situ, generating organic acids that could influence aerobic VC biodegradation processes. We examined the effect of organic acids (lactate, acetate, propionate, and butyrate) on aerobic VC biodegradation by VC-assimilating etheneotrophs Mycobacterium strain JS60 and Nocardioides strain JS614. Strain JS60 grew on all organic acids tested, while strain JS614 did not respond to lactate. VC-grown strain JS60 fed VC and one or more organic acids showed carbon catabolite repression (CCR) behavior where VC biodegradation occurred only after organic acids were depleted. In contrast, CCR was not evident in VC-grown strain JS614, which degraded VC and organic acids simultaneously. Acetate-grown JS60 showed similar CCR behavior when fed VC and a single organic acid, except that extended lag periods (5-12 days) occurred before VC oxidation ensued. Acetate-grown JS614 fed VC and either acetate or butyrate displayed 5-8 day lag periods before simultaneous VC and organic acid biodegradation. In contrast, acetate-grown JS614 degraded VC and propionate without a significant lag, suggesting a regulatory link between propionate and VC oxidation in JS614. Different global regulatory mechanisms controlling VC biodegradation in the presence of organic acids in etheneotrophs have implications for developing combined anaerobic-aerobic bioremediation strategies at chlorinated ethene-contaminated sites. KEY POINTS: • With organic acids present, VC utilization was repressed in JS60, but not in JS614 • Strain JS60 grew readily on lactate, while strain JS614 did not • Propionate alleviated lag periods for VC utilization in acetate-grown JS614.


Assuntos
Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Butiratos , Lactatos , Propionatos , Cloreto de Vinil/metabolismo , Poluentes Químicos da Água/metabolismo
5.
Environ Microbiol ; 23(6): 2823-2833, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32893469

RESUMO

Chemoautotrophic bacteria from the SUP05 clade often dominate anoxic waters within marine oxygen minimum zones (OMZs) where they use energy gained from the oxidation of reduced sulfur to fuel carbon fixation. Some of these SUP05 bacteria are facultative aerobes that can use either nitrate or oxygen as a terminal electron acceptor making them ideally suited to thrive at the boundaries of OMZs where they experience fluctuations in dissolved oxygen (DO). SUP05 metabolism in these regions, and therefore the biogeochemical function of SUP05, depends largely on their sensitivity to oxygen. We evaluated growth and quantified differences in gene expression in Ca. T. autotrophicus strain EF1 from the SUP05 clade under high DO (22 µM), anoxic, and low DO (3.8 µM) concentrations. We show that strain EF1 cells respire oxygen and nitrate and that cells have higher growth rates, express more genes, and fix more carbon when oxygen becomes available for aerobic respiration. Evidence that facultatively aerobic SUP05 are more active and respire nitrate when oxygen becomes available at low concentrations suggests that they are an important source of nitrite across marine OMZ boundary layers.


Assuntos
Oxigênio , Água do Mar , Crescimento Quimioautotrófico , Oxirredução , Filogenia , Enxofre
6.
Environ Sci Technol ; 51(21): 12164-12174, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28981261

RESUMO

Bioremediation of vinyl chloride (VC) contamination in groundwater could be mediated by three major bacterial guilds: anaerobic VC-dechlorinators, methanotrophs, and ethene-oxidizing bacteria (etheneotrophs) via metabolic or cometabolic pathways. We collected 95 groundwater samples across 6 chlorinated ethene-contaminated sites and searched for relationships among VC biodegradation gene abundance and expression and site geochemical parameters (e.g., VC concentrations). Functional genes from the three major VC-degrading bacterial guilds were present in 99% and expressed in 59% of the samples. Etheneotroph and methanotroph functional gene abundances ranged from 102 to 109 genes per liter of groundwater among the samples with VC reductive dehalogenase gene (bvcA and vcrA) abundances reaching 108 genes per liter of groundwater. Etheneotroph functional genes (etnC and etnE) and VC reductive dehalogenase genes (bvcA and vcrA) were strongly related to VC concentrations (p < 0.001). Methanotroph functional genes (mmoX and pmoA) were not related to VC concentration (p > 0.05). Samples from sites with bulk VC attenuation rates >0.08 year-1 contained higher levels of etheneotroph and anaerobic VC-dechlorinator functional genes and transcripts than those with bulk VC attenuation rates <0.004 year-1. We conclude that both etheneotrophs and anaerobic VC-dechlorinators have the potential to simultaneously contribute to VC biodegradation at these sites.


Assuntos
Bactérias , Água Subterrânea , Cloreto de Vinil , Biodegradação Ambiental , Etilenos , Genes Bacterianos , Poluentes Químicos da Água
7.
Appl Environ Microbiol ; 82(11): 3269-3279, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016563

RESUMO

UNLABELLED: Epoxyalkane:coenzyme M transferase (EaCoMT) plays a critical role in the aerobic biodegradation and assimilation of alkenes, including ethene, propene, and the toxic chloroethene vinyl chloride (VC). To improve our understanding of the diversity and distribution of EaCoMT genes in the environment, novel EaCoMT-specific terminal-restriction fragment length polymorphism (T-RFLP) and nested-PCR methods were developed and applied to groundwater samples from six different contaminated sites. T-RFLP analysis revealed 192 different EaCoMT T-RFs. Using clone libraries, we retrieved 139 EaCoMT gene sequences from these samples. Phylogenetic analysis revealed that a majority of the sequences (78.4%) grouped with EaCoMT genes found in VC- and ethene-assimilating Mycobacterium strains and Nocardioides sp. strain JS614. The four most-abundant T-RFs were also matched with EaCoMT clone sequences related to Mycobacterium and Nocardioides strains. The remaining EaCoMT sequences clustered within two emergent EaCoMT gene subgroups represented by sequences found in propene-assimilating Gordonia rubripertincta strain B-276 and Xanthobacter autotrophicus strain Py2. EaCoMT gene abundance was positively correlated with VC and ethene concentrations at the sites studied. IMPORTANCE: The EaCoMT gene plays a critical role in assimilation of short-chain alkenes, such as ethene, VC, and propene. An improved understanding of EaCoMT gene diversity and distribution is significant to the field of bioremediation in several ways. The expansion of the EaCoMT gene database and identification of incorrectly annotated EaCoMT genes currently in the database will facilitate improved design of environmental molecular diagnostic tools and high-throughput sequencing approaches for future bioremediation studies. Our results further suggest that potentially significant aerobic VC degraders in the environment are not well represented in pure culture. Future research should aim to isolate and characterize aerobic VC-degrading bacteria from these underrepresented groups.


Assuntos
Liases de Carbono-Enxofre/genética , Variação Genética , Água Subterrânea/microbiologia , Metagenoma , Etilenos/análise , Água Subterrânea/química , Hidrocarbonetos Clorados/análise , Metagenômica , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Poluentes do Solo/análise
8.
Environ Sci Technol ; 50(7): 3617-25, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26918370

RESUMO

Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC.


Assuntos
Bactérias/metabolismo , Etilenos/metabolismo , Água Subterrânea/microbiologia , Metano/metabolismo , Cloreto de Vinil/metabolismo , Aerobiose , Biodegradação Ambiental , Massachusetts , Minerais/metabolismo , Oxirredução
9.
Appl Microbiol Biotechnol ; 99(18): 7735-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25981993

RESUMO

Vinyl chloride (VC), a known human carcinogen, is a common and persistent groundwater pollutant at many chlorinated solvent contaminated sites. The remediation of such sites is challenging because of the lack of knowledge on the microorganisms responsible for in situ VC degradation. To address this, the microorganisms involved in carbon assimilation from VC were investigated in a culture enriched from contaminated site groundwater using stable isotope probing (SIP) and high-throughput sequencing. The mixed culture was added to aerobic media, and these were amended with labeled ((13)C-VC) or unlabeled VC ((12)C-VC). The cultures were sacrificed on days 15, 32, and 45 for DNA extraction. DNA extracts and SIP ultracentrifugation fractions were subject to sequencing as well as quantitative PCR (qPCR) for a functional gene linked to VC-assimilation (etnE). The gene etnE encodes for epoxyalkane coenzyme M transferase, a critical enzyme in the pathway for VC degradation. The relative abundance of phylotypes was compared across ultracentrifugation fractions obtained from the (13)C-VC- and (12)C-VC-amended cultures. Four phylotypes were more abundant in the heavy fractions (those of greater buoyant density) from the (13)C-VC-amended cultures compared to those from the (12)C-VC-amended cultures, including Nocardioides, Brevundimonas, Tissierella, and Rhodoferax. Therefore, both a previously identified VC-assimilating genus (Nocardioides) and novel microorganisms were responsible for carbon uptake. Enrichment of etnE with time was observed in the heavy fractions, and etnE sequences illustrated that VC-assimilators harbor similar Nocardioides-like etnE. This research provides novel data on the microorganisms able to assimilate carbon from VC.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Carbono/metabolismo , Água Subterrânea/microbiologia , Cloreto de Vinil/metabolismo , Poluentes da Água/metabolismo , Aerobiose , Bactérias/genética , Biotransformação , Liases de Carbono-Enxofre/genética , Marcação por Isótopo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 99(15): 6515-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25820643

RESUMO

Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.


Assuntos
Biota , Panicum/crescimento & desenvolvimento , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Biotransformação , Cloro/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Appl Microbiol Biotechnol ; 99(21): 9267-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169630

RESUMO

Clean-up of vinyl chloride (VC)-contaminated groundwater could be enhanced by stimulating aerobic VC-oxidizing bacterial populations (e.g., methanotrophs) with amendments such as molecular oxygen. In addition, ethene gas injection could further stimulate a different group of aerobic ethene- and VC-oxidizing bacteria called "etheneotrophs." We estimated the abundance and activity of these different VC-oxidizing bacteria in portions of a dilute groundwater VC plume subjected to oxygen and ethene biostimulation. Pyrosequencing of 16S rRNA genes, amplified from community DNA extracted from five groundwater monitoring wells, revealed that Proteobacteria dominated the microbial community. Among the Proteobacteria, methanotroph relative abundance was 6.00 % (well RB52I), 2.81 % (well RB46D), 56.3 % (well RB58I), 23.8 % (well RB63I), and 2.57 % (well RB64I). Reverse transcription qPCR (RT-qPCR) analysis was used to determined methanotroph and etheneotroph functional gene expression from selected monitoring wells. Resulting transcript per gene ratios for methanotroph functional genes (pmoA and mmoX) were 0.013 (RB46D), 0.017 (RB63I), 0.112 (RB64I), and 0.004 (RB46D), 0.239 (RB63I), and 0.199 (RB64I), respectively. Transcript per gene ratios for etheneotroph functional genes (etnC and etnE) were 0.37 (RB46D), 0.81 (RB63I), 5.85 (RB64I), and 0.38 (RB46D), 0.67 (RB63I), and 2.28 (RB64I), respectively. When considered along with geochemical and contaminant data from these wells, our RT-qPCR results suggest that methanotrophs and etheneotrophs were participating in VC cometabolism. We conclude that these molecular diagnostic techniques could be helpful to site managers interested in documenting the effectiveness of VC bioremediation strategies.


Assuntos
Etilenos/metabolismo , Água Subterrânea/microbiologia , Oxigênio/metabolismo , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , Cloreto de Vinil/metabolismo , Poluentes da Água/metabolismo , Aerobiose , DNA Ribossômico/química , DNA Ribossômico/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
12.
Environ Sci Technol ; 48(16): 9279-87, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25073818

RESUMO

Hazardous byproducts may be generated during the environmental processing of engineered nanomaterials. Here, we explore the ability of carbon nanotubes with nitrogen-containing surface groups (N-CNTs) to generate N-nitrosodimethylamine (NDMA) during chemical disinfection. Unexpectedly, we observed that commercial N-CNTs with amine, amide, or N-containing polymer (PABS) surface groups are a source of NDMA. As-received powders can leach up to 50 ng of NDMA per mg of N-CNT in aqueous suspension; presumably NDMA originates as a residue from N-CNT manufacturing. Furthermore, reaction of N-CNTs with free chlorine, monochloramine, and ozone generated byproduct NDMA at yields comparable to those reported for natural organic matter. Chlorination also altered N-CNT surface chemistry, with X-ray photoelectron spectroscopy indicating addition of Cl, loss of N, and an increase in surface O. Although these changes can increase N-CNT suspension stability, they do not enhance their acute toxicity in E. coli bioassays above that observed for as-received powders. Notably, however, dechlorination of reacted N-CNTs with sulfite completely suppresses N-CNT toxicity. Collectively, our work demonstrates that N-CNTs are both a source and precursor of NDMA, a probable human carcinogen, while chemical disinfection can produce CNTs exhibiting surface chemistry and environmental behavior distinct from that of native (i.e., as-received) materials.


Assuntos
Dimetilnitrosamina , Desinfecção , Nanotubos de Carbono/química , Poluentes Químicos da Água , Purificação da Água/métodos , Carcinógenos/química , Cloraminas/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Ozônio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/normas
13.
Int Biodeterior Biodegradation ; 89: 50-57, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24764649

RESUMO

Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g d.w.). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in sediment and pore water strongly suggest that in situ dechlorination occurred in sediments. However, 16S rRNA genes from putative PCB-dechlorinating Chloroflexi were relatively more abundant in upper 2 m sediments, as were genes indicative of aerobic biodegradation potential (i.e. biphenyl dioxygenase (bphA)). Characterization of the bacterial community by terminal restriction fragment length polymorphism and comparison of these with sediment and pore water PCB congener profiles with the Mantel test revealed a statistical correlation (p<0.001). Sequences classified as Acinetobacter and Acidovorax were highly abundant in deep sediments. Overall, our results suggest that PCB dechlorination has already occurred, and that IHSC sediments have the potential for further aerobic and anaerobic PCB biodegradation.

14.
Ecol Eng ; 71: 215-222, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25246731

RESUMO

Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil.

15.
Environ Microbiol ; 15(8): 2333-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23461624

RESUMO

Fungi are everywhere and interact with humans in countless ways, but a large group of fungi called 'Cryptomycota' has escaped detection until very recently. Still, the extent of diversity and ecological habits of this group remain largely unknown. We interrogated publically available 18S rRNA gene datasets, obtained via high-throughput sequencing from marine and freshwater samples, for Cryptomycota sequences. Contrary to previous work, we found evidence of substantial Cryptomycota diversity in the marine upper water column. Additionally, we produced a sequencing set from a groundwater aquifer, an environment unrepresented among 18S rRNA gene pyrosequencing sets. The Cryptomycota community in this aquifer sample appears distinct from the community in both freshwater and marine environments with evidence of a unique aquifer clade. This study significantly expands the boundary of known Cryptomycota sequence diversity and characterizes the phylogenetic distribution of this diversity in aquatic environments. Furthermore, the approach utilized is generalizable to discovery of novel micro-eukaryotic diversity from any lineage.


Assuntos
Fungos/classificação , Fungos/genética , Água Subterrânea/microbiologia , Filogenia , Microbiologia da Água , Água Doce/microbiologia , Iowa , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , Água do Mar/microbiologia
16.
Environ Sci Technol ; 47(14): 7672-8, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23781876

RESUMO

Biostimulation of groundwater microbial communities (e.g., with carbon sources) is a common approach to achieving in situ bioremediation of organic pollutants (e.g., explosives). We monitored a field-scale approach to remediate the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in an aquifer near the Iowa Army Ammunition Plant in Middletown, IA. The purpose of the study was to gain insight into the effect of biostimulation on the microbial community. Biostimulation with acetate led to the onset of RDX reduction at the site, which was most apparent in monitoring well MW309. Based on previous laboratory experiments, we hypothesized that RDX degradation and metabolite production would correspond to enrichment of one or more Fe(III)-reducing bacterial species. Community DNA from MW309 was analyzed with 454 pyrosequencing and terminal restriction fragment length polymorphism. Production of RDX metabolites corresponded to a microbial community shift from primarily Fe(III)-reducing Betaproteobacteria to a community dominated by Fe(III)-reducing Deltaproteobacteria (Geobacteraceae in particular) and Bacteroidetes taxa. This data provides a firsthand field-scale microbial ecology context to in situ RDX bioremediation using modern sequencing techniques that will inform future biostimulation applications.


Assuntos
Acetatos/metabolismo , Água Subterrânea/química , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/metabolismo
17.
mSphere ; 8(3): e0057122, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37017537

RESUMO

Row crop production in the agricultural Midwest pollutes waterways with nitrate, and exacerbates climate change through increased emissions of nitrous oxide and methane. Oxygenic denitrification processes in agricultural soils mitigate nitrate and nitrous oxide pollution by short-circuiting the canonical pathway to avoid nitrous oxide formation. Furthermore, many oxygenic denitrifiers employ a nitric oxide dismutase (nod) to create molecular oxygen that is used by methane monooxygenase to oxidize methane in otherwise anoxic soils. The direct investigation of nod genes that could facilitate oxygenic denitrification processes in agricultural sites is limited, with no prior studies investigating nod genes at tile drainage sites. Thus, we performed a reconnaissance of nod genes at variably saturated surface sites, and within a variably to fully saturated soil core in Iowa to expand the known distribution of oxygenic denitrifiers. We identified new nod gene sequences from agricultural soil and freshwater sediments in addition to identifying nitric oxide reductase (qNor) related sequences. Surface and variably saturated core samples displayed a nod to 16S rRNA gene relative abundance of 0.004% to 0.1% and fully saturated core samples had relative nod gene abundance of 1.2%. The relative abundance of the phylum Methylomirabilota increased from 0.6% and 1% in the variably saturated core samples to 3.8% and 5.3% in the fully saturated core samples. The more than 10-fold increase in relative nod abundance and almost 9-fold increase in relative Methylomirabilota abundance in fully saturated soils suggests that potential oxygenic denitrifiers play a greater nitrogen cycling role under these conditions. IMPORTANCE The direct investigation of nod genes in agricultural sites is limited, with no prior studies investigating nod genes at tile drains. An improved understanding of nod gene diversity and distribution is significant to the field of bioremediation and ecosystem services. The expansion of the nod gene database will advance oxygenic denitrification as a potential strategy for sustainable nitrate and nitrous oxide mitigation, specifically for agricultural sites.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/metabolismo , Nitratos/metabolismo , Ecossistema , Oxigênio/metabolismo , RNA Ribossômico 16S/genética , Bactérias , Óxido Nítrico , Metano/metabolismo
18.
MethodsX ; 10: 102039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798837

RESUMO

Many PCB-degrading aerobes have been identified which may serve as bioaugmentation strains for aerobic, in situ bioremediation or in combination with dredging operations. The present work describes a lab-scale PCB biodegradation assay which can be used to screen potential bioaugmentation strains or consortia for their ability to decrease PCB mass flux from contaminated sediment to air through biodegradation of freely dissolved PCBs that have desorbed from sediment particles. The assay uses two types of passive samplers to simultaneously measure PCB mass that is freely dissolved in aqueous solution and PCB mass that has volatilized to the headspace of the bioreactor. Using this approach, relative comparisons of PCB mass accumulated in passive samplers between bioaugmented treatments and controls allow for practical assessment of a microbial strain's ability to reduce both freely dissolved and vapor phase PCB concentrations. The method is designed to be conducted using aliquots of homogenized, well-characterized, PCB-contaminated sediment gathered from a field site. This work details the experimental design methodology, required materials, bioreactor set-up, passive sampling, PCB-extraction, sample cleanup, and quantification protocols such that the biodegradation assay can be conducted or replicated. A step-by-step protocol is also included and annotated with photos, tips, and tricks from experienced analysts.•Relative comparisons of PCB mass accumulated in passive samplers between experimental treatments and controls allow for practical assessment of bioaugmentation strain's ability to reduce both freely dissolved and vapor phase PCB concentrations•Passive sampler preparation, deployment, PCB-extraction, cleanup procedures, and quantification are detailed step-by-step and annotated by experienced analysts.

19.
FEMS Microbiol Ecol ; 98(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35665806

RESUMO

Microbial communities that support respiration of halogenated organic contaminants by Dehalococcoides sp. facilitate full-scale bioremediation of chlorinated ethenes and demonstrate the potential to aid in bioremediation of halogenated aromatics like polychlorinated biphenyls (PCBs). However, it remains unclear if Dehalococcoides-containing microbial community dynamics observed in sediment-free systems quantitatively resemble that of sediment environments. To evaluate that possibility we assembled, annotated, and analyzed a Dehalococcoides sp. metagenome-assembled genome (MAG) from PCB-contaminated sediments. Phylogenetic analysis of reductive dehalogenase gene (rdhA) sequences within the MAG revealed that pcbA1 and pcbA4/5-like rdhA were absent, while several candidate PCB dehalogenase genes and potentially novel rdhA sequences were identified. Using a compositional comparative metagenomics approach, we quantified Dehalococcoides-containing microbial community structure shifts in response to halogenated organics and the presence of sediments. Functional level analysis revealed significantly greater abundances of genes associated with cobamide remodeling and horizontal gene transfer in tetrachloroethene-fed cultures as compared to halogenated aromatic-exposed consortia with or without sediments, despite little evidence of statistically significant differences in microbial community taxonomic structure. Our findings support the use of a generalizable comparative metagenomics workflow to evaluate Dehalococcoides-containing consortia in sediments and sediment-free environments to eludicate functions and microbial interactions that facilitate bioremediation of halogenated organic contaminants.


Assuntos
Chloroflexi , Bifenilos Policlorados , Biodegradação Ambiental , Chloroflexi/química , Chloroflexi/genética , Dehalococcoides , Halogenação , Filogenia
20.
Microbiol Resour Announc ; 11(7): e0112621, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35766865

RESUMO

We present a comprehensive data set that describes an anaerobic microbial consortium native to polychlorinated biphenyl (PCB)-contaminated sediments. Obtained from sediment microcosms incubated for 200 days, the data set includes 4 metagenomes, 4 metatranscriptomes (in duplicate), and 62 metagenome-assembled genomes and captures microbial community interactions, structure, and function relevant to anaerobic PCB biodegradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA