Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Gene Ther Methods ; 30(3): 102-120, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30997855

RESUMO

In cellular immunotherapies, natural killer (NK) cells often demonstrate potent antitumor effects in high-risk cancer patients. But Good Manufacturing Practice (GMP)-compliant manufacturing of clinical-grade NK cells in high numbers for patient treatment is still a challenge. Therefore, new protocols for isolation and expansion of NK cells are required. In order to attack resistant tumor entities, NK cell killing can be improved by genetic engineering using alpharetroviral vectors that encode for chimeric antigen receptors (CARs). The aim of this work was to demonstrate GMP-grade manufacturing of NK cells using the CliniMACS® Prodigy device (Prodigy) with implemented applicable quality controls. Additionally, the study aimed to define the best time point to transduce expanding NK cells with alpharetroviral CAR vectors. Manufacturing and clinical-scale expansion of primary human NK cells were performed with the Prodigy starting with 8-15.0 × 109 leukocytes (including 1.1-2.3 × 109 NK cells) collected by small-scale lymphapheresis (n = 3). Positive fraction after immunoselection, in-process controls (IPCs), and end product were quantified by flow cytometric no-wash, single-platform assessment, and gating strategy using positive (CD56/CD16/CD45), negative (CD14/CD19/CD3), and dead cell (7-aminoactinomycine [7-AAD]) discriminators. The three runs on the fully integrated manufacturing platform included immunomagnetic separation (CD3 depletion/CD56 enrichment) followed by NK cell expansion over 14 days. This process led to high NK cell purities (median 99.1%) and adequate NK cell viabilities (median 86.9%) and achieved a median CD3+ cell depletion of log -3.6 after CD3 depletion and log -3.7 after immunomagnetic CD3 depletion and consecutive CD56 selection. Subsequent cultivation of separated NK cells in the CentriCult® chamber of Prodigy resulted in approximately 4.2-8.5-fold NK cell expansion rates by adding of NK MACS® basal medium containing NK MACS® supplement, interleukin (IL)-2/IL-15 and initial IL-21. NK cells expanded for 14 days revealed higher expression of natural cytotoxicity receptors (NKp30, NKp44, NKp46, and NKG2D) and degranulation/apoptotic markers and stronger cytolytic properties against K562 compared to non-activated NK cells before automated cultivation. Moreover, expanded NK cells had robust growth and killing activities even after cryopreservation. As a crucial result, it was possible to determine the appropriate time period for optimal CAR transduction of cultivated NK cells between days 8 and 14, with the highest anti-CD123 CAR expression levels on day 14. The anti-CD123 CAR NK cells showed retargeted killing and degranulation properties against CD123-expressing KG1a target cells, while basal cytotoxicity of non-transduced NK cells was determined using the CD123-negative cell line K562. Time-lapse imaging to monitor redirected effector-to-target contacts between anti-CD123 CAR NK and KG1a showed long-term effector-target interaction. In conclusion, the integration of the clinical-scale expansion procedure in the automated and closed Prodigy system, including IPC samples and quality controls and optimal time frames for NK cell transduction with CAR vectors, was established on 48-well plates and resulted in a standardized GMP-compliant overall process.


Assuntos
Alpharetrovirus/genética , Engenharia Celular , Células Matadoras Naturais , Receptores de Antígenos Quiméricos/genética , Linhagem Celular , Sobrevivência Celular , Citocinas/metabolismo , Vetores Genéticos , Humanos , Controle de Qualidade , Transdução Genética
2.
Hum Gene Ther ; 30(4): 381-401, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734584

RESUMO

The introduction of chimeric antigen receptors (CARs) to augment the anticancer activity of immune cells represents one of the major clinical advances in recent years. This work demonstrates that sorted CAR natural killer (NK) cells have improved antileukemia activity compared to control NK cells that lack a functional CAR. However, in terms of viability, effectiveness, risk of side effects, and clinical practicality and applicability, an important question is whether gene-modified NK cell lines represent better CAR effector cells than primary human donor CAR-NK (CAR-dNK) cells. Comparison of the functional activities of sorted CAR-NK cells generated using the NK-92 cell line with those generated from primary human dNK cells demonstrated that CAR-NK-92 cells had stronger cytotoxic activity against leukemia cells compared to CAR-dNK cells. CAR-NK-92 and CAR-dNK cells had similar CD107a surface expression upon co-incubation with leukemia cells. However, CAR-NK-92 cells secreted higher granzyme A and interleukin-17A levels, while CAR-dNK cells secreted more tumor necrosis factor alpha, interferon gamma, and granulysin. In addition, CAR-NK-92 cells revealed a significantly higher potential for adverse side effects against nonmalignant cells. In short, this work shows the feasibility for further development of CAR-NK strategies to treat leukemia.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Alpharetrovirus/genética , Animais , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular/imunologia , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Transgenes
4.
Hum Gene Ther ; 28(10): 897-913, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28810809

RESUMO

The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56+CD3-) was carried out with the CliniMACS Prodigy® in a single process, starting with approximately 1.2 × 109 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 106 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO™10, CellGro®, TexMACS™, and NK MACS®). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56+CD3- target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3 depletion and CD56 enrichment steps. Manually performed experiments to test different culture media demonstrated significantly higher NK cell expansion rates and an approximately equal distribution of CD56dimCD16pos and CD56brightCD16dim&neg NK subsets on day 14 with cells cultivated in NK MACS® media. Moreover, effector cell expansion in manually performed experiments with NK MACS® containing IL-2 and irradiated autologous FCs and IL-21, both added at the initiation of the culture, induced an 85-fold NK cell expansion. Compared to freshly isolated NK cells, expanded NK cells expressed significantly higher levels of NKp30, NKp44, NKG2D, TRAIL, FasL, CD69, and CD137, and showed comparable cell viabilities and killing/degranulation activities against tumor and leukemic cell lines in vitro. NK cells used for CAR transduction showed the highest anti-CD123 CAR expression on day 3 after gene modification. These anti-CD123 CAR-engineered NK cells demonstrated improved cytotoxicity against the CD123pos AML cell line KG1a and primary AML blasts. In addition, CAR NK cells showed higher degranulation and enhanced secretion of tumor necrosis factor alpha, interferon gamma, and granzyme A and B. In fluorescence imaging, specific interactions that initiated apoptotic processes in the AML target cells were detected between CAR NK cells and KG1a. After the fully automated NK cell separation process on Prodigy, a new NK cell expansion protocol was generated that resulted in high numbers of NK cells with potent antitumor activity, which could be modified efficiently by novel third-generation, alpha-retroviral SIN vector constructs. Next steps are the integration of the manual expansion procedure in the fully integrated platform for a standardized GMP-compliant overall process in this closed system that also may include gene modification of NK cells to optimize target-specific antitumor activity.


Assuntos
Técnicas de Cultura de Células , Células Matadoras Naturais/citologia , Automação Laboratorial , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Separação Celular/métodos , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Alimentadoras , Citometria de Fluxo , Expressão Gênica , Vetores Genéticos , Humanos , Interleucinas/farmacologia , Células K562 , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transdução Genética , Transgenes
5.
Front Immunol ; 8: 1100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943878

RESUMO

Natural killer cells (NK) are essential for the elimination of resistant acute myeloid and acute lymphoblastic leukemia (AML and ALL) cells. NK cell-based immunotherapies have already successfully entered for clinical trials, but limitations due to immune escape mechanisms were identified. Therefore, we extended our established NK cell protocol by integration of the previously investigated powerful trispecific immunoligand ULBP2-aCD19-aCD33 [the so-called triplebodies (TBs)] to improve the anti-leukemic specificity of activated NK cells. IL-2-driven expansion led to strongly elevated natural killer group 2 member D (NKG2D) expressions on donor NK cells which promote the binding to ULBP2+ TBs. Similarly, CD33 expression on these NK cells could be detected. Dual-specific targeting and elimination were investigated against the B-cell precursor leukemia cell line BV-173 and patient blasts, which were positive for myeloid marker CD33 and B lymphoid marker CD19 exclusively presented on biphenotypic B/myeloid leukemia's. Cytotoxicity assays demonstrated improved killing properties of NK cells pre-coated with TBs compared to untreated controls. Specific NKG2D blocking on those NK cells in response to TBs diminished this killing activity. On the contrary, the observed upregulation of surface CD33 on about 28.0% of the NK cells decreased their viability in response to TBs during cytotoxic interaction of effector and target cells. Similar side effects were also detected against CD33+ T- and CD19+ B-cells. Very preliminary proof of principle results showed promising effects using NK cells and TBs against primary leukemic cells. In summary, we demonstrated a promising strategy for redirecting primary human NK cells in response to TBs against leukemia, which may lead to a future progress in NK cell-based immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA