Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 11(11): e1005652, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588211

RESUMO

The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.


Assuntos
Mamíferos/genética , Família Multigênica , RNA Interferente Pequeno/genética , Animais , Evolução Molecular , Mamíferos/classificação
2.
Plant Biotechnol J ; 10(4): 443-52, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22239253

RESUMO

Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were non-flowering. These two groups of plants produced 58%-101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment.


Assuntos
Biomassa , MicroRNAs/genética , Oryza/genética , Panicum/anatomia & histologia , Panicum/crescimento & desenvolvimento , Carboidratos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hidrólise , MicroRNAs/metabolismo , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade
3.
PLoS One ; 16(9): e0255660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555059

RESUMO

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a brood ball coated with their oral and anal secretions to prevent decay and that will serve as a food source for their young. Nicrophorus pustulatus is an unusual species with the ability to overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus species, has been reported not to exhibit antimicrobial properties. This work aims to better understand how the presence or absence of a food source influences the expression of genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced using an Illumina platform. The resulting reads were used to assemble a de novo transcriptome using Trinity. Duplicates with more than 95% similarity were removed to obtain a "unigene" set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript abundance was determined using Kallisto and differential gene expression analysis was performed using edgeR. A total of 651 genes were found to be differentially expressed, including 390 upregulated and 261 downregulated genes in fed insects compared to starved. Several genes upregulated in fed beetles are associated with the insect immune response and detoxification processes with only one transcript encoding for the antimicrobial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate the production of genes encoding AMPs during feeding. This study provides a snapshot of the changes in gene expression in the salivary glands of N. pustulatus following feeding while providing a well described transcriptome for the further analysis of this unique burying beetle.


Assuntos
Besouros/genética , Comportamento Alimentar , Alimentos , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Glândulas Salivares/metabolismo , Transcriptoma , Animais , Secreções Corporais , Besouros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo
4.
New Phytol ; 184(1): 85-98, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19555436

RESUMO

MicroRNAs (miRNAs) and small-interfering RNAs (siRNAs) have emerged as important regulators of gene expression in higher eukaryotes. Recent studies indicate that genomes in higher plants encode lineage-specific and species-specific miRNAs in addition to the well-conserved miRNAs. Leguminous plants are grown throughout the world for food and forage production. To date the lack of genomic sequence data has prevented systematic examination of small RNAs in leguminous plants. Medicago truncatula, a diploid plant with a near-completely sequenced genome has recently emerged as an important model legume. We sequenced a small RNA library generated from M. truncatula to identify not only conserved miRNAs but also novel small RNAs, if any. Eight novel small RNAs were identified, of which four (miR1507, miR2118, miR2119 and miR2199) are annotated as legume-specific miRNAs because these are conserved in related legumes. Three novel transcripts encoding TIR-NBS-LRR proteins are validated as targets for one of the novel miRNA, miR2118. Small RNA sequence analysis coupled with the small RNA blot analysis, confirmed the expression of around 20 conserved miRNA families in M. truncatula. Fifteen transcripts have been validated as targets for conserved miRNAs. We also characterized Tas3-siRNA biogenesis in M. truncatula and validated three auxin response factor (ARF) transcripts that are targeted by tasiRNAs. These findings indicate that M. truncatula and possibly other related legumes have complex mechanisms of gene regulation involving specific and common small RNAs operating post-transcriptionally.


Assuntos
Medicago truncatula/genética , MicroRNAs/genética , Sequência de Bases , Northern Blotting , Clonagem Molecular , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade da Espécie
5.
J Mol Biol ; 369(1): 1-10, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17428496

RESUMO

The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.


Assuntos
Sequência Conservada , Evolução Molecular , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Zinco/metabolismo , Sequência de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Fosfoproteínas/química , Estrutura Terciária de Proteína , Soluções , Ubiquitina-Proteína Ligases
6.
Biochim Biophys Acta ; 1725(2): 174-81, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16109458

RESUMO

The heme-regulated inhibitor of protein synthesis (HRI) regulates translation through the phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (eIF 2). While HRI is best known for its activation in response to heme-deficiency, we recently showed that the binding of NO and CO to the N-terminal heme-binding domain (NT-HBD) of HRI activated and suppressed its activity, respectively. Here, we examined the effect of hemin, NO, and CO on the interaction between the NT-HBD and the catalytic domain of HRI (HRI/Delta HBD). Hemin stabilized the interaction of NT-HBD with HRI/Delta HBD, and NO and CO disrupted and stabilized this interaction, respectively. Mutant HRI (Delta H-HRI), lacking amino acids 116-158 from the NT-HBD, was less sensitive to heme-induced inhibition, and mutant NT-HBD lacking these residues did not bind to HRI/Delta HBD. HRI/Delta HBD and Delta H-HRI also activated more readily than HRI in response to heme-deficiency. Thus, HRI's activity is regulated through the modulation of the interaction between its NT-HBD and catalytic domain.


Assuntos
Monóxido de Carbono/química , Heme/química , Óxido Nítrico/química , Reticulócitos/enzimologia , eIF-2 Quinase/análise , eIF-2 Quinase/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Ativação Enzimática , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Relação Estrutura-Atividade , eIF-2 Quinase/genética
7.
Cytoskeleton (Hoboken) ; 72(7): 305-39, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26033929

RESUMO

Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.


Assuntos
Actinas/metabolismo , Filamentos Intermediários/metabolismo , Microtúbulos/metabolismo , Septinas/metabolismo , Sumoilação/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia
8.
Methods Mol Biol ; 1093: 123-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24178561

RESUMO

Increasingly, the discovery and characterization of small regulatory RNAs from a variety of organisms have all required deep-sequencing methodologies. However, the crux to successful deep-sequencing analysis depends upon optimal construction of a cDNA library compatible for the high-throughput sequencing platform. Challenges to small RNA library constructions arise when dealing with minute tissue samples because certain structural RNA fragments can dominate and mask the desired characterization of regulatory small RNAs like microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs). Here, we describe methods that improve the chances of constructing a successful library from small RNAs isolated from minute tissues such as enriched follicle cells from the Drosophila ovarium. Because the ribosomal RNA (rRNA) fragments are frequently the major contaminants in small RNA preparations from minute amounts of tissue, we demonstrate the utility of antisense oligonucleotide depletion and an acryloylaminophenylboronic acid (APB) polyacrylamide gel system for separating the abundant 2S rRNA in Drosophila from endo-siRNAs and piRNAs. Finally, our methodology generates libraries amenable to multiplex sequencing on the Illumina Hi-Seq platform.


Assuntos
Biblioteca Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Manejo de Espécimes , Animais , Ácidos Borônicos/química , Drosophila melanogaster/citologia , Eletroforese em Gel de Poliacrilamida , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Oligorribonucleotídeos Antissenso/genética , Especificidade de Órgãos , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Análise de Sequência de RNA
9.
Nat Genet ; 46(7): 685-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908250

RESUMO

Phenotypic differences between closely related species are thought to arise primarily from changes in gene expression due to mutations in cis-regulatory sequences (enhancers). However, it has remained unclear how frequently mutations alter enhancer activity or create functional enhancers de novo. Here we use STARR-seq, a recently developed quantitative enhancer assay, to determine genome-wide enhancer activity profiles for five Drosophila species in the constant trans-regulatory environment of Drosophila melanogaster S2 cells. We find that the functions of a large fraction of D. melanogaster enhancers are conserved for their orthologous sequences owing to selection and stabilizing turnover of transcription factor motifs. Moreover, hundreds of enhancers have been gained since the D. melanogaster-Drosophila yakuba split about 11 million years ago without apparent adaptive selection and can contribute to changes in gene expression in vivo. Our finding that enhancer activity is often deeply conserved and frequently gained provides functional insights into regulatory evolution.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Genoma , Animais , Células Cultivadas , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
10.
J Plant Physiol ; 167(11): 896-904, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20207044

RESUMO

In recent years, several plant species such as switchgrass, Miscanthus and Brachypodium have been recognized as potential model plant species for cellulosic bioenergy production. Of these, switchgrass has attracted much attention in the United States and worldwide because it can grow well on marginal lands and tolerate frequent drought spells. However, little is known about the basic biology of the traits that control these important characteristics in switchgrass. Genome-encoded approximately 21-24nt microRNAs (miRNAs) have emerged as critical regulators of gene expression important for normal growth and development and adaptation to abiotic stress, including nutrient-deprived conditions. To understand miRNA-guided post-transcriptional gene regulatory networks in this plant species, we sought to identify miRNAs in switchgrass. Using computational and experimental approaches, we identified approximately 20 conserved miRNA families. Temporal expression analysis indicated that some miRNAs have distinct tissue-specific expression, although most are ubiquitously expressed. Unlike in Arabidopsis and other plants, miR395 and miR399 were detected in plants grown on optimal levels of sulfate or phosphate in switchgrass, and were only slightly altered when exposed to sulfate or phosphate deficit conditions. Thirty-seven genes were predicted as targets for miRNAs, and 4 target mRNAs (Squamosa promoter binding-like factor, apetala 2-like, NAC domain containing transcription factor and HD-Zip homologs) were validated by 5'-RACE assays. These findings provide a snapshot of the miRNA component and possible targets in switchgrass.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Poaceae/genética , Poaceae/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Fosfatos/metabolismo , Plântula/genética , Plântula/metabolismo , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA