Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375292

RESUMO

CNTs/Fe-BTC composite materials were synthesized with the one-step solvothermal method. MWCNTs and SWCNTs were incorporated in situ during synthesis. The composite materials were characterized by different analytical techniques and used in the CO2-photocatalytic reduction to value-added products and clean fuels. In the incorporation of CNTs into Fe-BTC, better physical-chemical and optical properties were observed compared to Fe-BTC pristine. SEM images showed that CNTs were incorporated into the porous structure of Fe-BTC, indicating the synergy between them. Fe-BTC pristine showed to be selective to ethanol and methanol; although, it was more selective to ethanol. However, the incorporation of small amounts of CNTs into Fe-BTC not only showed higher production rates but changes in the selectivity compared with the Fe-BTC pristine were also observed. It is important to mention that the incorporation of CNTs into MOF Fe-BTC allowed for increasing the mobility of electrons, decreasing the recombination of charge carriers (electron/hole), and increasing the photocatalytic activity. In both reaction systems (batch and continuous), composite materials showed to be selective towards methanol and ethanol; however, in the continuous system, lower production rates were observed due to the decrease in the residence time compared to the batch system. Therefore, these composite materials are very promising systems to convert CO2 to clean fuels that could replace fossil fuels soon.

2.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296671

RESUMO

Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV-Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Corantes/química , Ferro/química , Estruturas Metalorgânicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA