Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 621(7978): 324-329, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648851

RESUMO

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Assuntos
Biomassa , Calor Extremo , Peixes , Animais , Europa (Continente) , Pesqueiros/estatística & dados numéricos , Peixes/classificação , Peixes/fisiologia , Calor Extremo/efeitos adversos , América do Norte , Biodiversidade
2.
Sci Data ; 11(1): 24, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177193

RESUMO

Scientific bottom-trawl surveys are ecological observation programs conducted along continental shelves and slopes of seas and oceans that sample marine communities associated with the seafloor. These surveys report taxa occurrence, abundance and/or weight in space and time, and contribute to fisheries management as well as population and biodiversity research. Bottom-trawl surveys are conducted all over the world and represent a unique opportunity to understand ocean biogeography, macroecology, and global change. However, combining these data together for cross-ecosystem analyses remains challenging. Here, we present an integrated dataset of 29 publicly available bottom-trawl surveys conducted in national waters of 18 countries that are standardized and pre-processed, covering a total of 2,170 sampled fish taxa and 216,548 hauls collected from 1963 to 2021. We describe the processing steps to create the dataset, flags, and standardization methods that we developed to assist users in conducting spatio-temporal analyses with stable regional survey footprints. The aim of this dataset is to support research, marine conservation, and management in the context of global change.


Assuntos
Biodiversidade , Peixes , Animais , Ecossistema , Pesqueiros , Oceanos e Mares
3.
Trends Ecol Evol ; 38(12): 1143-1153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37684131

RESUMO

All aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration. We identify essential taxonomic elements from our interoperability assessment to support improved access and integration of taxonomic data. A stronger focus on these elements has the potential to involve taxonomic communities in biodiversity science and overcome broken linkages currently limiting research capacity. We encourage a community effort to democratize taxonomic expertise and language in order to facilitate maximum interoperability and integration.


Assuntos
Biodiversidade , Classificação , Conservação dos Recursos Naturais
4.
Curr Biol ; 31(21): 4817-4823.e5, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34499852

RESUMO

As climate change accelerates, species are shifting poleward and subtropical and tropical species are colonizing temperate environments.1-3 A popular approach for characterizing such responses is the community temperature index (CTI), which tracks the mean thermal affinity of a community. Studies in marine,4 freshwater,5 and terrestrial6 ecosystems have documented increasing CTI under global warming. However, most studies have only linked increasing CTI to increases in warm-affinity species. Here, using long-term monitoring of marine fishes across the Northern Hemisphere, we decomposed CTI changes into four underlying processes-tropicalization (increasing warm-affinity), deborealization (decreasing cold-affinity), borealization (increasing cold-affinity), and detropicalization (decreasing warm-affinity)-for which we examined spatial variability and drivers. CTI closely tracked changes in sea surface temperature, increasing in 72% of locations. However, 31% of these increases were primarily due to decreases in cold-affinity species, i.e., deborealization. Thus, increases in warm-affinity species were prevalent, but not ubiquitous. Tropicalization was stronger in areas that were initially warmer, experienced greater warming, or were deeper, while deborealization was stronger in areas that were closer to human population centers or that had higher community thermal diversity. When CTI (and temperature) increased, species that decreased were more likely to be living closer to their upper thermal limits or to be commercially fished. Additionally, warm-affinity species that increased had smaller body sizes than those that decreased. Our results show that CTI changes arise from a variety of underlying community responses that are linked to environmental conditions, human impacts, community structure, and species characteristics.


Assuntos
Mudança Climática , Ecossistema , Animais , Temperatura Baixa , Peixes , Aquecimento Global , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA