Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1210-D1217, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183204

RESUMO

The Catalogue Of Somatic Mutations In Cancer (COSMIC), https://cancer.sanger.ac.uk/cosmic, is an expert-curated knowledgebase providing data on somatic variants in cancer, supported by a comprehensive suite of tools for interpreting genomic data, discerning the impact of somatic alterations on disease, and facilitating translational research. The catalogue is accessed and used by thousands of cancer researchers and clinicians daily, allowing them to quickly access information from an immense pool of data curated from over 29 thousand scientific publications and large studies. Within the last 4 years, COSMIC has substantially expanded its utility by adding new resources: the Mutational Signatures catalogue, the Cancer Mutation Census, and Actionability. To improve data accessibility and interoperability, somatic variants have received stable genomic identifiers that are associated with their genomic coordinates in GRCh37 and GRCh38, and new export files with reduced data redundancy have been made available for download.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias , Humanos , Bases de Dados Factuais , Bases de Conhecimento , Mutação , Neoplasias/genética , Bases de Dados Genéticas/tendências , Internet
2.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791415

RESUMO

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Assuntos
Bases de Dados Genéticas , Genômica , Internet , Software , Animais , Biologia Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genética
3.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33137190

RESUMO

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , SARS-CoV-2/genética , Vertebrados/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Internet , Anotação de Sequência Molecular/métodos , Pandemias , Vertebrados/classificação
4.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31598706

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-Computador
5.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691826

RESUMO

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Epigenoma , Anotação de Sequência Molecular , Algoritmos , Animais , Gráficos por Computador , Bases de Dados de Proteínas , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Histonas/metabolismo , Humanos , Imageamento Tridimensional , Internet , Ligantes , Ferramenta de Busca , Software , Especificidade da Espécie , Transcriptoma , Interface Usuário-Computador , Navegador
6.
Nucleic Acids Res ; 47(D1): D745-D751, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407521

RESUMO

The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Vertebrados/genética , Animais , Biologia Computacional/tendências , Humanos , Camundongos , Anotação de Sequência Molecular , Software
7.
Nucleic Acids Res ; 46(D1): D802-D808, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29092050

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including genome sequence, gene models, transcript sequence, genetic variation, and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments and expansions. These include the incorporation of almost 20 000 additional genome sequences and over 35 000 tracks of RNA-Seq data, which have been aligned to genomic sequence and made available for visualization. Other advances since 2015 include the release of the database in Resource Description Framework (RDF) format, a large increase in community-derived curation, a new high-performance protein sequence search, additional cross-references, improved annotation of non-protein-coding genes, and the launch of pre-release and archival sites. Collectively, these changes are part of a continuing response to the increasing quantity of publicly-available genome-scale data, and the consequent need to archive, integrate, annotate and disseminate these using automated, scalable methods.


Assuntos
Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Eucariotos/genética , Genômica , Sequência de Aminoácidos , Animais , Sequência de Bases , Mineração de Dados , Previsões , Genoma , Anotação de Sequência Molecular , RNA/genética , Interface Usuário-Computador
8.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29155950

RESUMO

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Disseminação de Informação , Animais , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Vertebrados/genética , Navegador
9.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899575

RESUMO

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Ferramenta de Busca , Software , Navegador , Animais , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Especificidade da Espécie , Vertebrados
10.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26687719

RESUMO

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Assuntos
Bases de Dados Genéticas , Genômica , Anotação de Sequência Molecular , Animais , Genes , Variação Genética , Humanos , Internet , Camundongos , Proteínas/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , Software
11.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352552

RESUMO

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Epigênese Genética , Variação Genética , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Software
12.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316576

RESUMO

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Cordados/genética , Variação Genética , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Fenótipo , Ratos
13.
Nucleic Acids Res ; 41(Database issue): D48-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203987

RESUMO

The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Regulação da Expressão Gênica , Variação Genética , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Ratos , Software , Peixe-Zebra/genética
14.
J Clin Med ; 10(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802047

RESUMO

The epidemiology and the current burden of chronic liver disease are changing globally, with non-alcoholic fatty liver disease (NAFLD) becoming the most frequent cause of liver disease in close relationship with the global epidemics of obesity, type 2 diabetes and metabolic syndrome. The clinical phenotypes of NAFLD are very heterogeneous in relationship with multiple pathways involved in the disease progression. In the absence of a specific treatment for non-alcoholic steatohepatitis (NASH), it is important to understand the natural history of the disease, to identify and to optimize the control of factors that are involved in disease progression. In this paper we propose a critical analysis of factors that are involved in the progression of the liver damage and the occurrence of extra-hepatic complications (cardiovascular diseases, extra hepatic cancer) in patients with NAFLD. We also briefly discuss the impact of the heterogeneity of the clinical phenotype of NAFLD on the clinical practice globally and at the individual level.

15.
Front Nutr ; 8: 774030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111794

RESUMO

An extensive body of the literature shows a strong interrelationship between the pathogenic pathways of non-alcoholic fatty liver disease (NAFLD) and sarcopenia through the muscle-liver-adipose tissue axis. NAFLD is one of the leading causes of chronic liver diseases (CLD) affecting more than one-quarter of the general population worldwide. The disease severity spectrum ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, and its complications: end-stage chronic liver disease and hepatocellular carcinoma. Sarcopenia, defined as a progressive loss of the skeletal muscle mass, reduces physical performances, is associated with metabolic dysfunction and, possibly, has a causative role in NAFLD pathogenesis. Muscle mass is a key determinant of the whole-body insulin-mediated glucose metabolism and impacts fatty liver oxidation and energy homeostasis. These mechanisms drive the accumulation of ectopic fat both in the liver (steatosis, fatty liver) and in the muscle (myosteatosis). Myosteatosis rather than the muscle mass per se, seems to be closely associated with the severity of the liver injury. Sarcopenic obesity is a recently described entity which associates both sarcopenia and obesity and may trigger worse clinical outcomes including hepatic fibrosis progression and musculoskeletal disabilities. Furthermore, the muscle-liver-adipose tissue axis has a pivotal role in changes of the body composition, resulting in a distinct clinical phenotype that enables the identification of the "sarcopenic NAFLD phenotype." This review aims to bring some light into the complex relationship between sarcopenia and NAFLD and critically discuss the key mechanisms linking NAFLD to sarcopenia, as well as some of the clinical consequences associated with the coexistence of these two entities: the impact of body composition phenotypes on muscle morphology, the concept of sarcopenic obesity, the relationship between sarcopenia and the severity of the liver damage and finally, the future directions and the existing gaps in the knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA