Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 11375-11385, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791877

RESUMO

We herein report the selection and characterization of a new riboswitch dependent on the aminoglycoside tobramycin. Its dynamic range rivals even the tetracycline dependent riboswitch to be the current best performing, synthetic riboswitch that controls translation initiation. The riboswitch was selected with RNA Capture-SELEX, a method that not only selects for binding but also for structural changes in aptamers on binding. This study demonstrates how this method can fundamentally reduce the labour required for the de novo identification of synthetic riboswitches. The initially selected riboswitch candidate harbours two distinct tobramycin binding sites with KDs of 1.1 nM and 2.4 µM, respectively, and can distinguish between tobramycin and the closely related compounds kanamycin A and B. Using detailed genetic and biochemical analyses and 1H NMR spectroscopy, the proposed secondary structure of the riboswitch was verified and the tobramycin binding sites were characterized. The two binding sites were found to be essentially non-overlapping, allowing for a separate investigation of their contribution to the activity of the riboswitch. We thereby found that only the high-affinity binding site was responsible for regulatory activity, which allowed us to engineer a riboswitch from only this site with a minimal sequence size of 33 nt and outstanding performance.


Assuntos
Aptâmeros de Nucleotídeos , Engenharia Genética , Riboswitch , Tobramicina , Aptâmeros de Nucleotídeos/química , Ligantes , Conformação de Ácido Nucleico , Inibidores da Síntese de Proteínas , RNA/química , Tetraciclina , Tobramicina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Engenharia Genética/métodos
2.
ACS Synth Biol ; 13(1): 319-327, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38127784

RESUMO

Progress in the synthetic biology field is driven by the development of new tools for synthetic circuit engineering. Traditionally, the focus has relied on protein-based designs. In recent years, the use of RNA-based tools has tremendously increased, due to their versatile functionality and applicability. A promising class of molecules is RNA aptamers, small, single-stranded RNA molecules that bind to a target molecule with high affinity and specificity. When targeting bacterial repressors, RNA aptamers allow one to add a new layer to an established protein-based regulation. In the present study, we selected an RNA aptamer binding the bacterial repressor DasR, preventing its binding to its operator sequence and activating DasR-controlled transcription in vivo. This was made possible only by the combination of an in vitro selection and subsequent in vivo screening. Next-generation sequencing of the selection process proved the importance of the in vivo screening for the discovery of aptamers functioning in the cell. Mutational and biochemical studies led to the identification of the minimal necessary binding motif. Taken together, the resulting combination of bacterial repressor and RNA aptamer enlarges the synthetic biology toolbox by adding a new level of regulation.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros/métodos , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA