Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolomics ; 15(4): 56, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929085

RESUMO

INTRODUCTION: Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers of response or performance. METHODS AND OBJECTIVES: The experimental material consisted in eight sunflower lines with two line status, four restorers (R, used as males) and four maintainers (B, corresponding to females) routinely used for sunflower hybrid varietal production, respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to characterize sunflower leaf composition in order to investigate the effect of line status genotypes and environmental conditions and to find the best and smallest set of biomarkers for line status and stress response using a custom-made process of variables selection. RESULTS: Five hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such as 1H-NMR, MS-based profiles and targeted analyses of major metabolites. Based on statistical analyses, a limited number of markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological data. Another metabolic marker set was able to discriminate line status. CONCLUSION: This study underlines the potential of metabolic markers for discriminating genotype groups and environmental conditions. Their potential use for prediction is discussed.


Assuntos
Helianthus/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , Biomarcadores/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Helianthus/genética , Metabolômica/métodos , Estresse Fisiológico/fisiologia
2.
Plant Physiol ; 161(3): 1362-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23341361

RESUMO

Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al., 2002). This study further examines the role of this auxin transcriptional regulator during tomato fruit development at the level of transcripts, enzyme activities, and metabolites. It is noteworthy that the dark-green phenotype of antisense SlARF4-suppressed lines is restricted to fruit, suggesting that SlARF4 controls chlorophyll accumulation specifically in this organ. The SlARF4 underexpressing lines accumulate more starch at early stages of fruit development and display enhanced chlorophyll content and photochemical efficiency, which is consistent with the idea that fruit photosynthetic activity accounts for the elevated starch levels. SlARF4 expression is high in pericarp tissues of immature fruit and then undergoes a dramatic decline at the onset of ripening concomitant with the increase in sugar content. The higher starch content in developing fruits of SlARF4 down-regulated lines correlates with the up-regulation of genes and enzyme activities involved in starch biosynthesis, suggesting their negative regulation by SlARF4. Altogether, the data uncover the involvement of ARFs in the control of sugar content, an essential feature of fruit quality, and provide insight into the link between auxin signaling, chloroplastic activity, and sugar metabolism in developing fruit.


Assuntos
Metabolismo dos Carboidratos/genética , Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Vias Biossintéticas/genética , Regulação para Baixo/genética , Frutas/enzimologia , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Repressoras/metabolismo , Amido/metabolismo
3.
Plant Cell Environ ; 36(12): 2175-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639099

RESUMO

Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.


Assuntos
Biomarcadores/metabolismo , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/fisiologia , Água/fisiologia , Ritmo Circadiano/genética , Desidratação , Secas , Perfilação da Expressão Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Genótipo , Cinética , Modelos Lineares , Transpiração Vegetal/fisiologia , Reprodutibilidade dos Testes , Solo
4.
Biomolecules ; 13(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509146

RESUMO

Sunflower is a hybrid crop that is considered moderately drought-tolerant and adapted to new cropping systems required for the agro-ecological transition. Here, we studied the impact of hybridity status (hybrids vs. inbred lines) on the responses to drought at the molecular and eco-physiological level exploiting publicly available datasets. Eco-physiological traits and leaf proteomes were measured in eight inbred lines and their sixteen hybrids grown in the high-throughput phenotyping platform Phenotoul-Heliaphen. Hybrids and parental lines showed different growth strategies: hybrids grew faster in the absence of water constraint and arrested their growth more abruptly than inbred lines when subjected to water deficit. We identified 471 differentially accumulated proteins, of which 256 were regulated by drought. The amplitude of up- and downregulations was greater in hybrids than in inbred lines. Our results show that hybrids respond more strongly to water deficit at the molecular and eco-physiological levels. Because of presence/absence polymorphism, hybrids potentially contain more genes than their parental inbred lines. We propose that detrimental homozygous mutations and the lower number of genes in inbred lines lead to a constitutive defense mechanism that may explain the lower growth of inbred lines under well-watered conditions and their lower reactivity to water deficit.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Proteoma/genética , Proteoma/metabolismo , Água/metabolismo , Adaptação Fisiológica , Fenótipo
5.
Front Plant Sci ; 11: 558855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983214

RESUMO

Soybean emergence and yield may be affected by many factors. A better understanding of the cultivar x sowing date x environment interactions could shed light into the competitiveness of soybean with other crops, notably, to help manage major biotic and abiotic factors that limit soybean production. We conducted a 2-year field experiments to measure emergence dynamics and final rates of three soybean cultivars from different maturity groups, with early and conventional sowing dates and across three locations. We also measured germination parameter values of the three soybean cultivars from different maturity groups under controlled experiments to parametrize the SIMPLE crop emergence model. This allowed us to assess the prediction quality of the model for emergence rates and to perform simulations. Final emergence rates under field conditions ranged from 62% to 92% and from 51% to 94% for early and conventional sowing, respectively. The model finely predicted emergence courses and final rates (root mean square error of prediction (RMSEP), efficiency (EF), and mean deviation (MD) ranging between 2% to 18%, 0.46% to 0.99%, and -10% to 15%, respectively) across a wide range of the sowing conditions tested. Differences in the final emergence rates were found, not only among cultivars but also among locations for the same cultivar, although no clear trend or consistent ranking was found in this regard. Modeling suggests that seedling mortality rates were dependent on the soil type with up to 35% and 14% of mortality in the silty loam soil, due to a soil surface crust and soil aggregates, respectively. Non-germination was the least important cause of seedling mortality in all soil types (up to 3% of emergence losses), while no seedling mortality due to drought was observed. The average grain yield ranged from 3.1 to 4.0 t ha-1, and it was significantly affected by the irrigation regime (p < 0.001) and year (p < 0.001) but not by locations, sowing date or cultivars. We conclude that early sowing is unlikely to affect soybean emergence in South-West of France and therefore may represent an important agronomic lever to escape summer drought that markedly limit soybean yield in this region.

6.
Front Plant Sci ; 10: 1755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063913

RESUMO

Developing new cropping strategies (very early sowing, crop expansion at higher latitudes, double cropping) to improve soybean production in Europe under climate change needs a good prediction of phenology under different temperature and photoperiod conditions. For that purpose, a simple phenology algorithm (SPA) was developed and parameterized for 10 contrasting soybean cultivars (maturity group 000 to II). Two experiments were carried out at INRA Toulouse (France) for parameterization: 1) Phenological monitoring of plants in pots on an outdoor platform with 6 planting dates. 2) Response of seed germination to temperature in controlled conditions. Multi-location field trials including 5 sites, 4 years, 2 sowing dates, and 10 cultivars were used to evaluate the SPA phenology predictions. Mean cardinal temperatures (minimum, optimum, and maximum) for germination were ca. 2, 30, and 40°C, respectively with significant differences among cultivars. The photoperiod sensitivity coefficient varied among cultivars when fixing Popt and Pcrt, optimal and critical photoperiods respectively, by maturity group. The parameterized algorithm showed an RMSE of less than 6 days for the prediction of crop cycle duration (i.e. cotyledons stage to physiological maturity) in the field trials including 75 data points. Flowering (R1 stage), and beginning of grain filling (R5 stage) dates were satisfactorily predicted with RMSEs of 8.2 and 9.4 days respectively. Because SPA can be also parameterized using data from field experiments, it can be useful as a plant selection tool across environments. The algorithm can be readily applied to species other than soybean, and its incorporation into cropping systems models would enhance the assessment of the performance of crop cultivars under climate change scenarios.

7.
Data Brief ; 21: 1296-1301, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456247

RESUMO

This article presents experimental data describing the physiology and morphology of sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen at INRA Toulouse (France). Here, we provide data including specific leaf area, osmotic potential and adjustment, carbon isotope discrimination, leaf transpiration, plant architecture: plant height, leaf number, stem diameter. We also provide leaf areas of individual organs through time and growth rate during the stress period, environmental data such as temperatures, wind and radiation during the experiment. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the physiological basis of heterosis. It is available on the following repository: https://doi.org/10.25794/phenotype/er6lPW7V.

8.
Funct Plant Biol ; 43(8): 797-805, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480504

RESUMO

Water deficit influences leaf transpiration rate and photosynthetic activity. The genotype-dependent response of the latter has not been assessed in sunflower (Helianthus annuus L.), particularly during the reproductive period when grain filling and lipogenesis depend greatly on photosynthate availability. To evaluate genotypic responses to water deficit before and after flowering, two greenhouse experiments were performed. Four genotypes-two inbred lines (PSC8, XRQ) and two cultivars (Inedi, Melody)-were subjected to progressive water deficit. Non-linear regression was used to calculate the soil water deficit threshold (FTSWt) at which processes (transpiration and photosynthetic activity) were affected by water deficit. In the vegetative growth stage, photosynthetic activity was affected at a lower mean value of FTSWt (0.39) than transpiration (0.55). However, in the reproductive stage, photosynthetic activity was more sensitive to soil water deficit (FTSWt=0.45). We found a significant (P=0.02) effect of plant growth stage on the difference between photosynthesis and transpiration rate thresholds and, a significant (P=0.03) effect of leaf age on transpiration. Such results will improve phenotyping methods and provide paths for integrating genotypic variability into crop models.

9.
PLoS One ; 7(10): e45249, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056196

RESUMO

Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions.


Assuntos
Adaptação Fisiológica/genética , Secas , Redes Reguladoras de Genes , Helianthus/genética , Adaptação Fisiológica/efeitos dos fármacos , Análise de Variância , Ecossistema , Ambiente Controlado , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Variação Genética , Genótipo , Helianthus/efeitos dos fármacos , Helianthus/fisiologia , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Transcriptoma , Água/metabolismo , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA