Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosurg Rev ; 43(2): 473-482, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30051302

RESUMO

The course of the internal carotid artery (ICA) and its segment classifications were reviewed by means of a new and freely available 3D interactive model of the artery and the skull base, based on human neuroimages, that can be freely downloaded at the Public Repository of the University of Barcelona (http://diposit.ub.edu/dspace/handle/2445/112442) and runs under Acrobat Reader in Mac and Windows computers and Windows 10 tablets. The 3D-PDF allows zoom, rotation, selective visualization of structures, and a predefined sequence view. Illustrative images of the different classifications were obtained. Fischer (Zentralbl Neurochir 3:300-313, 1938) described five segments in the opposite direction to the blood flow. Gibo-Rothon (J Neurosurg 55:560-574, 1981) follow the blood flow, incorporated the cervical and petrous portions, and divided the subarachnoid course-supraclinoid-in ophthalmic, communicating, and choroidal segments, enhancing transcranial microscopic approaches. Bouthillier (Neurosurgery 38:425-433, 1996) divided the petrous portion describing the lacerum segment (exposed in transfacial procedures and exploration of Meckel's cave) and added the clinoid segment between the proximal and distal dural rings, of interest in cavernous sinus surgery. The Kassam's group (2014), with an endoscopic endonasal perspective, introduces the "paraclival segment," including the "lacerum segment" and part of the intracavernous ICA, and details surgical landmarks to minimize the risk of injury. Other classifications are also analyzed. This review through an interactive 3D tool provides virtual views of the ICA and becomes an innovative perspective to the segment classifications and neuroanatomy of the ICA and surrounding structures.


Assuntos
Angiografia/métodos , Artéria Carótida Interna/anatomia & histologia , Artéria Carótida Interna/cirurgia , Artéria Carótida Interna/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Humanos , Modelos Anatômicos , Procedimentos Neurocirúrgicos , Base do Crânio/anatomia & histologia , Base do Crânio/cirurgia
2.
J Med Syst ; 42(4): 72, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508089

RESUMO

We describe a new and freely available 3D interactive model of the intracranial internal carotid artery (ICA) and the skull base that also allows to display and compare its main segment classifications. High-resolution 3D human angiography (isometric voxel's size 0.36 mm) and Computed Tomography angiography images were exported to Virtual Reality Modeling Language (VRML) format for processing in a 3D software platform and embedding in a 3D Portable Document Format (PDF) document that can be freely downloaded at http://diposit.ub.edu/dspace/handle/2445/112442 and runs under Acrobat Reader on Mac and Windows computers and Windows 10 tablets. The 3D-PDF allows for visualisation and interaction through JavaScript-based functions (including zoom, rotation, selective visualization and transparentation of structures or a predefined sequence view of the main segment classifications if desired). The ICA and its main branches and loops, the Gasserian ganglion, the petrolingual ligament and the proximal and distal dural rings within the skull base environment (anterior and posterior clinoid processes, silla turcica, ethmoid and sphenoid bones, orbital fossae) may be visualized from different perspectives. This interactive 3D-PDF provides virtual views of the ICA and becomes an innovative tool to improve the understanding of the neuroanatomy of the ICA and surrounding structures.


Assuntos
Artéria Carótida Interna/anatomia & histologia , Angiografia por Tomografia Computadorizada/métodos , Imageamento Tridimensional/métodos , Modelos Anatômicos , Simulação por Computador , Humanos , Base do Crânio/anatomia & histologia
3.
Clin Anat ; 28(2): 205-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25352014

RESUMO

A 3D model of lumbar structures of anesthetic interest was reconstructed from human magnetic resonance (MR) images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The MR images were analyzed using a specific 3D software platform for biomedical data. Models generated from manually delimited volumes of interest and selected MR images were exported to Virtual Reality Modeling Language format and were presented in a PDF document containing JavaScript-based functions. The 3D file and the corresponding instructions and license files can be downloaded freely at http://diposit.ub.edu/dspace/handle/2445/44844?locale=en. The 3D PDF interactive file includes reconstructions of the L3-L5 vertebrae, intervertebral disks, ligaments, epidural and foraminal fat, dural sac and nerve root cuffs, sensory and motor nerve roots of the cauda equina, and anesthetic approaches (epidural medial, spinal paramedial, and selective nerve root paths); it also includes a predefined sequential educational presentation. Zoom, 360° rotation, selective visualization, and transparency graduation of each structure and clipping functions are available. Familiarization requires no specialized informatics knowledge. The ease with which the document can be used could make it valuable for anatomical and anesthetic teaching and demonstration of patient information.


Assuntos
Vértebras Lombares/anatomia & histologia , Raquianestesia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Modelos Anatômicos
4.
J Med Syst ; 39(10): 127, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26306875

RESUMO

A three-dimensional (3D) model of the skull base was reconstructed from the pre- and post-dissection head CT images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The CT images were segmented using a specific 3D software platform for biomedical data, and the resulting 3D geometrical models of anatomical structures were used for dual purpose: to simulate the extended endoscopic endonasal transsphenoidal approaches and to perform the quantitative analysis of the procedures. The analysis consisted of bone removal quantification and the calculation of quantitative parameters (surgical freedom and exposure area) of each procedure. The results are presented in three PDF documents containing JavaScript-based functions. The 3D-PDF files include reconstructions of the nasal structures (nasal septum, vomer, middle turbinates), the bony structures of the anterior skull base and maxillofacial region and partial reconstructions of the optic nerve, the hypoglossal and vidian canals and the internal carotid arteries. Alongside the anatomical model, axial, sagittal and coronal CT images are shown. Interactive 3D presentations were created to explain the surgery and the associated quantification methods step-by-step. The resulting 3D-PDF files allow the user to interact with the model through easily available software, free of charge and in an intuitive manner. The files are available for offline use on a personal computer and no previous specialized knowledge in informatics is required. The documents can be downloaded at http://hdl.handle.net/2445/55224 .


Assuntos
Endoscopia/educação , Imageamento Tridimensional/instrumentação , Procedimentos Cirúrgicos Nasais/educação , Base do Crânio/anatomia & histologia , Humanos , Modelos Anatômicos , Osso Esfenoide/anatomia & histologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA