Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 198: 106542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810948

RESUMO

A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.


Assuntos
Proteína Huntingtina , Doença de Huntington , Neurônios , Proteínas tau , Humanos , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Doença de Huntington/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Neurônios/metabolismo , Neurônios/patologia , Adulto , Transplante de Tecido Fetal/métodos , Idoso , Transplante de Tecido Encefálico/métodos
2.
Neurobiol Dis ; 141: 104941, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422281

RESUMO

In recent years, substantial evidence has emerged to suggest that spreading of pathological proteins contributes to disease pathology in numerous neurodegenerative disorders. Work from our laboratory and others have shown that, despite its strictly genetic nature, Huntington's disease (HD) may be another condition in which this mechanism contributes to pathology. In this study, we set out to determine if the mutant huntingtin protein (mHTT) present in post-mortem brain tissue derived from HD patients can induce pathology in mice and/or non-human primates. For this, we performed three distinct sets of experiments where homogenates were injected into the brains of adult a) Wild-type (WT) and b) BACHD mice or c) non-human primates. Neuropathological assessments revealed that, while changes in the endogenous huntingtin were not apparent, mHTT could spread between cellular elements and brain structures. Furthermore, behavioural differences only occurred in the animal model of HD which already overexpressed mHTT. Taken together, our results indicate that mHTT derived from human brains has only a limited capacity to propagate between cells and does not depict prion-like characteristics. This contrasts with recent work demonstrating that other forms of mHTT - such as fibrils of a pathological polyQ length or fibroblasts and induced pluripotent stem cells derived from HD cases - can indeed disseminate disease throughout the brain in a prion-like fashion.


Assuntos
Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Comportamento Animal , Encéfalo/metabolismo , Criança , Feminino , Humanos , Proteína Huntingtina/administração & dosagem , Macaca mulatta , Camundongos Endogâmicos C57BL , Mutação , Neurônios/patologia
3.
Neurobiol Dis ; 141: 104951, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439599

RESUMO

In order to model various aspects of Huntington's disease (HD) pathology, in particular protein spread, we administered adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or GFP coupled to HTT-Exon1 (19Q or 103Q) to the central nervous system of adult wild-type (WT) mice and non-human primates. All animals underwent behavioral testing and post-mortem analyses to determine the long-term consequences of AAV injection. Both mice and non-human primates demonstrated behavioral changes at 2-3 weeks post-surgery. In mice, these changes were absent after 3 months while in non-human primates, they persisted in the majority of tested animals. Post-mortem analysis revealed that spreading of the aggregates was limited, although the virus did spread between synaptically-connected brain regions. Despite circumscribed spreading, the presence of mHTT generated changes in endogenous huntingtin (HTT) levels in both models. Together, these results suggest that viral expression of mHTTExon1 can induce spreading and seeding of HTT in both mice and non-human primates.


Assuntos
Dependovirus/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL
4.
Neurobiol Dis ; 141: 104943, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407769

RESUMO

Huntington's disease (HD) is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property which may serve as a new therapeutic focus. Accordingly, we set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region close to the aa586 caspase-6 cleavage site of the HTT protein. This monoclonal antibody, designated C6-17, effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, we demonstrate that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates. These findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake suggesting that this antibody could interfere with the pathological processes of mutHTT spreading in vivo.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/imunologia , Doença de Huntington/metabolismo , Animais , Transporte Biológico , Feminino , Células HEK293 , Células HeLa , Humanos , Doença de Huntington/prevenção & controle , Camundongos Endogâmicos BALB C , Mutação , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle
5.
Ann Neurol ; 84(6): 950-956, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30286516

RESUMO

For patients with incurable neurodegenerative disorders such as Huntington's (HD) and Parkinson's disease, cell transplantation has been explored as a potential treatment option. Here, we present the first clinicopathological study of a patient with HD in receipt of cell-suspension striatal allografts who took part in the NEST-UK multicenter clinical transplantation trial. Using various immunohistochemical techniques, we found a discrepancy in the survival of grafted projection neurons with respect to grafted interneurons as well as major ongoing inflammatory and immune responses to the grafted tissue with evidence of mutant huntingtin aggregates within the transplant area. Our results indicate that grafts can survive more than a decade post-transplantation, but show compromised survival with inflammation and mutant protein being observed within the transplant site. Ann Neurol 2018;84:950-956.


Assuntos
Aloenxertos/patologia , Doença de Huntington/cirurgia , Acetilcolinesterase/metabolismo , Adulto , Antígenos CD/metabolismo , Encéfalo/patologia , Transplante de Tecido Encefálico/métodos , Calbindina 2/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo
6.
Acta Neuropathol ; 137(6): 981-1001, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30788585

RESUMO

In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington's disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.


Assuntos
Neurônios GABAérgicos/metabolismo , Proteína Huntingtina/genética , Agregados Proteicos , Animais , Ansiedade/etiologia , Encéfalo/patologia , Linhagem Celular Tumoral , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/patologia , Éxons , Comportamento Exploratório , Feminino , Neurônios GABAérgicos/ultraestrutura , Humanos , Proteína Huntingtina/administração & dosagem , Proteína Huntingtina/química , Proteína Huntingtina/toxicidade , Células-Tronco Pluripotentes Induzidas/citologia , Injeções , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , Atividade Motora , Neuroblastoma/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/toxicidade
7.
Brain ; 140(11): 2982-2992, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069396

RESUMO

Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.


Assuntos
Aloenxertos/patologia , Transplante de Tecido Fetal , Doença de Huntington/patologia , Neostriado/transplante , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Proteínas tau/metabolismo , Adulto , Idoso , Aloenxertos/metabolismo , Autopsia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Masculino , Pessoa de Meia-Idade , Neostriado/metabolismo , Neostriado/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Agregação Patológica de Proteínas/metabolismo
8.
J Exp Neurosci ; 12: 1179069518772380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760562

RESUMO

There is compelling evidence that a number of neurodegenerative diseases share common pathogenic mechanisms. Better understanding these mechanisms will allow us to develop new therapeutic strategies. This commentary follows up on our recent findings that tau pathology can be found in healthy fetal tissue transplanted into the brain of patients with either Huntington or Parkinson disease. We will examine how tau appears to be shared in a number of different conditions and how its expression relates to cognitive decline and disease progression. We will further review pathogenic mechanisms and especially the relevance of the possible prion-like behavior of tau. We will conclude by discussing how all this work opens up novel therapeutic approaches to treating the cognitive impairments related to neurodegenerative diseases using a common strategy.

9.
Clin Hemorheol Microcirc ; 67(1): 15-24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598830

RESUMO

BACKGROUND: Tetrahydrobiopterin (BH4), an endogenous nucleic acid derivative, acts as an important cofactor for several enzymes found within the vascular endothelium, which is deranged in sepsis. OBJECTIVE: We hypothesized that BH4 would improve capillary density and decrease inflammation within the intestinal microcirculation of septic rats. METHODS: We conducted a randomized, controlled trial using two previously validated models of sepsis in rats: 1) A fecal peritonitis model using a stent perforating the ascending colon, and 2) An endotoxemia model using lipopolysaccharide (LPS) toxin from E. coli. Experimental groups receiving BH4 (60 mg/kg) were compared to otherwise healthy controls and to untreated groups with sepsis-like physiology. RESULTS: BH4 decreased leukocyte-endothelial adhesion by 55% and 58% (P < 0.05) in the peritonitis model and endotoxemia models, respectively. In the endotoxemia model but not the peritonitis model, BH4 improved functional capillary density in capillary beds within the intestine (141.3 vs. 106.7 mm/cm2, p < 0.05). Macrohemodynamic parameters were no different between placebo treatment and BH4-treated groups. CONCLUSIONS: This study demonstrates that BH4 improves capillary density and inflammation in two separate models of sepsis. BH4 may represent a novel adjunct in the treatment of sepsis and septic shock in clinical practice. Further dose-finding studies and clinical trials are warranted.


Assuntos
Biopterinas/análogos & derivados , Sepse/tratamento farmacológico , Animais , Biopterinas/uso terapêutico , Modelos Animais de Doenças , Masculino , Microcirculação , Ratos , Ratos Endogâmicos Lew , Sepse/patologia
10.
Med Hypotheses ; 89: 37-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26968906

RESUMO

Sepsis represents the systemic immune response to an infection. Mortality of sepsis slightly decreased over the past years, but due to the growing incidence, the absolute number of deaths still increases and belongs to the three most frequent causes of death worldwide. To date, there is no specific treatment for sepsis available yet. Iron is essential to both human beings and microbes and of great significance in many physiological and biochemical processes. Since iron is involved in the bacterial proliferation and immune dysregulation, we hypothesize that restricting host iron levels by application of iron chelators attenuates bacterial growth and improves the detrimental dysregulation of the systemic immune response in sepsis.


Assuntos
Bactérias/imunologia , Imunidade Inata/imunologia , Quelantes de Ferro/uso terapêutico , Ferro/imunologia , Sepse/tratamento farmacológico , Sepse/imunologia , Bactérias/efeitos dos fármacos , Medicina Baseada em Evidências , Humanos , Imunidade Inata/efeitos dos fármacos , Sepse/microbiologia , Resultado do Tratamento
11.
Clin Hemorheol Microcirc ; 58(1): 97-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25227191

RESUMO

Methylene blue (MB) has been used with some success as a treatment for the vasoplegia of vasopressor-refractory septic shock. The putative mechanism of action of MB is the inhibition of endothelial nitric oxide within the microvasculature and improved responsiveness to endogenous catecholamines (norepinephrine (NE)). However, to date, no study has demonstrated the microcirculatory effect of methylene blue in septic shock. The objective of this randomized, controlled, animal study was to show, in an experimentally-induced, septic shock model in rats, the effects of MB and NE on global hemodynamics and the microcirculation. Mean arterial pressure (MAP) was drastically reduced following bacterial endotoxin (lipopolysaccharide, LPS) administration in animals not receiving vasopressors. Only the combination of NE + MB restored MAP to control levels by the end of the three hour experiment. Intravital microscopy of the microcirculation was performed in the terminal ileum in order to examine functional capillary density in intestinal muscle layers and the mucosa, as well as leukocyte activation in venules (rolling, adhesion to the endothelium). Untreated LPS animals showed a significant increase in leukocyte adhesion and a decrease in capillary perfusion in the intestinal microcirculation. In groups receiving NE or NE+MB, we observed a significant decrease in leukocyte adhesion and improved functional capillary density, indicating that microvasculature function was improved. This study suggests that methylene blue may be able to improve hemodynamics while preserving microvascular function in septic shock.


Assuntos
Intestinos/irrigação sanguínea , Intestinos/efeitos dos fármacos , Azul de Metileno/química , Microcirculação/efeitos dos fármacos , Norepinefrina/química , Choque Séptico/fisiopatologia , Animais , Adesão Celular , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotoxinas/química , Hemodinâmica , Leucócitos/citologia , Leucócitos/metabolismo , Lipopolissacarídeos/química , Pressão , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA