Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441968

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Coração , Fígado/diagnóstico por imagem , Fígado/metabolismo , Isótopos de Carbono/metabolismo
2.
NMR Biomed ; 37(3): e5073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990800

RESUMO

The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.


Assuntos
Ácido Láctico , Ácido Pirúvico , Ratos , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Isótopos de Carbono/metabolismo
3.
J Magn Reson Imaging ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363087

RESUMO

BACKGROUND: MR spectroscopy (MRS) is a noninvasive tool for evaluating biochemical alterations, such as glutamate (Glu)/gamma-aminobutyric acid (GABA) imbalance and depletion of antioxidative glutathione (GSH) after traumatic brain injury (TBI). Thalamus, a critical and vulnerable region post-TBI, is challenging for MRS acquisitions, necessitating optimization to simultaneously measure GABA/Glu and GSH. PURPOSE: To assess the feasibility and optimize acquisition and processing approaches for simultaneously measuring GABA, Glx (Glu + glutamine (Gln)), and GSH in the thalamus, employing Hadamard encoding and reconstruction of MEscher-GArwood (MEGA)-edited spectroscopy (HERMES). STUDY TYPE: Prospective. SUBJECTS: 28 control subjects (age: 35.9 ± 15.1 years), and 17 mild TBI (mTBI) patients (age: 32.4 ± 11.3 years). FIELD STRENGTH/SEQUENCE: 3T/T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE), HERMES. ASSESSMENT: We evaluated the impact of acquisition with spatial saturation bands and post-processing with spectral alignment on HERMES performance in the thalamus among controls. Within-subject variability was examined in five controls through repeated scans within a week. The HERMES spectra in the posterior cingulate cortex (PCC) of controls were used as a reference for assessing HERMES performance in a reliable target. Furthermore, we compared metabolite levels and fitting quality in the thalamus between mTBI patients and controls. STATISTICAL TESTS: Unpaired t-tests and within-subject coefficient-of-variation (CV). A P-value <0.05 was deemed significant. RESULTS: HERMES spectra, acquired with saturation bands and processed with spectral alignment, yielded reliable metabolite measurements in the thalamus. The mean within-subject CV for GABA, Glx, and GSH levels were 18%, 10%, and 16% in the thalamus (7%, 9%, and 16% in the PCC). GABA (3.20 ± 0.60 vs 2.51 ± 0.55, P < 0.01) and Glx (8.69 ± 1.23 vs 7.72 ± 1.19, P = 0.03) levels in the thalamus were significantly higher in mTBI patients than in controls, with GSH (1.27 ± 0.35 vs 1.22 ± 0.28, P = 0.65) levels showing no significant difference. DATA CONCLUSION: Simultaneous measuring GABA/Glx and GSH using HERMES is feasible in the thalamus, providing valuable insight into TBI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

4.
Chem Soc Rev ; 51(7): 2601-2680, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234776

RESUMO

Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.


Assuntos
Nanoestruturas , Neurociências , Ouro , Nanoestruturas/uso terapêutico , Nanotecnologia , Engenharia Tecidual
5.
Anal Chem ; 94(33): 11600-11609, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35900877

RESUMO

Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.


Assuntos
Nanopartículas Metálicas , Prata , Eletroquímica/métodos , Eletrólitos , Nanopartículas Metálicas/química , Microeletrodos , Oxirredução
6.
Anal Biochem ; 645: 114633, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247355

RESUMO

The rapid spread of SARS-CoV-2 infection throughout the world led to a global public health and economic crisis triggering an urgent need for the development of low-cost vaccines, therapies and high-throughput detection assays. In this work, we used a combination of Ideal-Filter Capillary Electrophoresis SELEX (IFCE-SELEX), Next Generation Sequencing (NGS) and binding assays to isolate and validate single-stranded DNA aptamers that can specifically recognize the SARS-CoV-2 Spike glycoprotein. Two selected non-competing DNA aptamers, C7 and C9 were successfully used as sensitive and specific biological recognition elements for the development of electrochemical and fluorescent aptasensors for the SARS-CoV-2 Spike glycoprotein with detection limits of 0.07 fM and 41.87 nM, respectively.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Aptâmeros de Nucleotídeos/genética , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , Técnica de Seleção de Aptâmeros , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Anal Bioanal Chem ; 414(4): 1609-1622, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783880

RESUMO

An electrochemical aptamer-based sensor was developed for glutamate, the major excitatory neurotransmitter in the central nervous system. Determining glutamic acid release and glutamic acid levels is crucial for studying signal transmission and for diagnosing pathological conditions in the brain. Glutamic acid-selective oligonucleotides were isolated from an ssDNA library using the Capture-SELEX protocol in complex medium. The selection permitted the isolation of an aptamer 1d04 with a dissociation constant of 12 µM. The aptamer sequence was further used in the development of an electrochemical aptamer sensor. For this purpose, a truncated aptamer sequence named glu1 was labelled with a ferrocene redox tag at the 3'-end and immobilized on a gold electrode surface via Au-thiol bonds. Using 6-mercapto-1-hexanol as the backfill, the sensor performance was characterized by alternating current voltammetry. The glu1 aptasensor showed a limit of detection of 0.0013 pM, a wide detection range between 0.01 pM and 1 nM, and good selectivity for glutamate in tenfold diluted human serum. With this enzyme-free aptasensor, the highly selective and sensitive detection of glutamate was demonstrated, which possesses great potential for implementation in microelectrodes and for in vitro as well as in vivo monitoring of neurotransmitter release.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Ácido Glutâmico/sangue , Técnicas Biossensoriais/métodos , Ácido Glutâmico/análise , Hexanóis/química , Humanos , Limite de Detecção , Compostos de Sulfidrila/química
8.
Pflugers Arch ; 473(11): 1761-1773, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415396

RESUMO

The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.


Assuntos
Acetilcoenzima A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Oxirredução , Oxirredutases/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Mikrochim Acta ; 188(3): 88, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594523

RESUMO

A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , L-Lactato Desidrogenase/sangue , Nanopartículas Metálicas/química , Proteínas de Protozoários/sangue , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Imunoensaio/métodos , L-Lactato Desidrogenase/imunologia , Limite de Detecção , Malária/diagnóstico por imagem , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/imunologia
10.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207725

RESUMO

Recent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cells.


Assuntos
Nanopartículas Metálicas , Técnicas de Cultura de Células , Espectroscopia Dielétrica , Microeletrodos , Prata
11.
Nano Lett ; 20(7): 5243-5250, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520573

RESUMO

Diarylethene molecules are discussed as possible optical switches, which can reversibly transition between completely conjugated (closed) and nonconjugated (open) forms with different electrical conductance and optical absorbance, by exposure to UV and visible light. However, in general the opening reaction exhibits much lower quantum yield than the closing process, hindering their usage in optoelectronic devices. To enhance the opening process, which is supported by visible light, we employ the plasmonic field enhancement of gold films perforated with nanoholes. We show that gold nanohole arrays reveal strong optical transmission in the visible range (∼60%) and pronounced enhancement of field intensities, resulting in around 50% faster switching kinetics of the molecular species in comparison with quartz substrates. The experimental UV-vis measurements are verified with finite-difference time-domain simulation that confirm the obtained results. Thus, we propose gold nanohole arrays as transparent and conductive plasmonic material that accelerates visible-light-triggered chemical reactions including molecular switching.

12.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884462

RESUMO

Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte-electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system's electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.


Assuntos
Eletrólitos/química , Líquidos Iônicos/química , Condutividade Elétrica , Eletrodos , Metilaminas/química , Conformação Molecular , Platina/química
13.
Curr Opin Oncol ; 32(3): 223-231, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32195681

RESUMO

PURPOSE OF REVIEW: The present review describes the current role of metabolic imaging techniques such as multiparametric MRI (mpMRI), magnetic resonance spectroscopic imaging (MRSI), hyperpolarized MRSI, and positron emission tomography (PET) in the diagnosis of primary prostate cancer, surveillance of low-grade disease, detection of metastases, and evaluation of biochemical recurrence after therapy. RECENT FINDINGS: The natural history of prostate cancer ranges from indolent disease that is optimally monitored by active surveillance, to highly aggressive disease that can be lethal. Current diagnostic methods remain imperfect in noninvasively distinguishing between silent versus aggressive tumors. Hence, there is a high demand for noninvasive imaging techniques that offer insight into biological behavior of prostate cancer cells. Characterization of prostate cancer metabolism is a promising area to provide such insights. SUMMARY: Metabolic imaging may allow for greater detection and ultimately characterization of tumor based on aggressiveness and spread. Hence, it has the potential to monitor tumor activity, predict prognostic outcomes, and guide individualized therapies.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Glicólise , Humanos , Processamento de Imagem Assistida por Computador/métodos , Metástase Linfática , Imageamento por Ressonância Magnética/métodos , Masculino , Metástase Neoplásica , Fosforilação Oxidativa , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/patologia
14.
Magn Reson Med ; 81(5): 2869-2877, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30687948

RESUMO

PURPOSE: Developing a method for simultaneous metabolic imaging of copolarized [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts that also permits different excitation flip angles for substrates and their metabolic products. METHODS: The proposed pulse sequence consists of 2 frequency-selective radiofrequency pulses to alternatingly excite 2 spectral sub-bands each one followed by a fast 3D spiral CSI (3D-spCSI) readout. Spectrally selective radiofrequency pulses were designed to excite differential flip angles on substrates and products in each spectral sub-band. Number of signal averages analysis was used to determine a spectral width suitable to resolve the metabolites of interest in each of the sub-bands. RESULTS: Phantom experiments verified the copolarization strategy and radiofrequency pulse design following differential flip angle used in our method. The signal behavior of the resonances in each sub-band was unaffected by the excitation of the respective alternate frequency band. Dynamic 3D 13 C CSI data demonstrated the ability of the sequence to image metabolites like pyruvate-hydrate, lactate, alanine, fumarate, and malate simultaneously and detect metabolic changes in the liver in a rat model of carbon tetrachloride-induced liver damage. CONCLUSION: The presented method allows the dynamic CSI of a mixture of [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts while also permitting the use of different flip angles for substrate and product signals. The method is potentially useful for combined in vivo imaging of inflammation and cell necrosis.


Assuntos
Fumaratos/química , Imageamento Tridimensional/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Ácido Pirúvico/química , Animais , Artefatos , Isótopos de Carbono/química , Masculino , Distribuição Normal , Imagens de Fantasmas , Ondas de Rádio , Ratos , Ratos Wistar , Processamento de Sinais Assistido por Computador
15.
Langmuir ; 35(25): 8183-8190, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31144819

RESUMO

Although organosilanes, especially 3-aminopropyltriethoxysilane (APTES), are commonly used to functionalize oxide substrates for a variety of applications ranging from molecular/biosensors and electronics to protective layers, reliable and controlled deposition of these molecules remains a major obstacle. In this study, we use surface potential analyses to record and optimize the gas-phase deposition of APTES self-assembled monolayers (SAMs) and to determine the resulting change of the electrokinetic potential and charge at the solid?liquid interface when the system is exposed to an electrolyte. Using a gas-phase molecular layer deposition setup with an in situ molecule deposition sensor, APTES is deposited at room temperature onto ozone-activated SiO2. The resulting layers are characterized using various techniques ranging from contact angle analysis, ellipsometry, fluorescence microscopy, X-ray photoelectron spectroscopy, and electrokinetic analysis to AFM. It turns out that adequate postdeposition treatment is crucial to the formation of perfect molecular SAMs. We demonstrate how a thick layer of APTES molecules is initially adsorbed at the surface; however, the molecules do not bind to SiO2 and are removed if the film is exposed to an electrolyte. Only if the film is kept in a gaseous environment (preferable at low pressure) for a long enough time do APTES molecules start to bind to the surface and form the SAM layer. During this time, superfluous molecules are removed. The resulting modification of the electrokinetic potential at the surface is analyzed in detail for different states.

16.
Eur J Appl Physiol ; 119(11-12): 2421-2433, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686213

RESUMO

Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.


Assuntos
Doença da Descompressão/tratamento farmacológico , Fluorocarbonos/farmacologia , Fluorocarbonos/uso terapêutico , Animais , Doença da Descompressão/metabolismo , Embolia Aérea/metabolismo , Humanos , Nitrogênio/metabolismo , Oxigênio/metabolismo
17.
Small ; 14(15): e1703815, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29542239

RESUMO

A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries.

18.
Nanotechnology ; 29(38): 385704, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29968582

RESUMO

Devices with metallic nanoconstrictions functionalized by organic molecules are promising candidates for the role of functional devices in molecular electronics. However, at the moment little is known about transport and noise properties of nanoconstriction devices of this kind. In this paper, transport properties of bare gold and molecule-containing tunable cross-section nanoconstrictions are studied using low-frequency noise spectroscopy. Normalized noise power spectral density (PSD) S I /I 2 dependencies are analyzed for a wide range of sample resistances R from 10 Ohm to 10 MOhm. The peculiarities and physical background of the flicker noise behavior in the low-bias regime are studied. It is shown that modification of the sample surface with benzene-1,4-dithiol molecules results in a decrease of the normalized flicker noise spectral density level in the ballistic regime of sample conductance. The characteristic power dependence of normalized noise PSD as a function of system resistance is revealed. Models describing noise behavior for bare gold and BDT modified samples are developed and compared with the experimental data for three transport regimes: diffusive, ballistic and tunneling. Parameters extracted from models by fitting are used for the characterization of nanoconstriction devices.

19.
Small ; 13(24)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464550

RESUMO

Accelerated neurite outgrowth of rat cortical neurons on a flexible and inexpensive substrate functionalized with gold nanocone arrays is reported. The gold nanocone arrays are fabricated on Teflon films by a bottom-up approach based on colloidal lithography followed by deposition of a thin gold layer. The geometry of nanocone arrays including height and pitch is controlled by the overall etching time and template polystyrene beads size. Fluorescence microscopy studies reveal high viability and significant morphological changes of the neurons on the structured surfaces. The elongation degree of neurite is maximized on the nanocone arrays created with 1 µm polystyrene beads by a factor of two with respect to the control. Furthermore, the interface between the neurons and the nanocones is investigated by scanning electron microscopy and focused ion beam cross-sectioning. The detailed observation of the neuron/nanocone interfaces reveals the morphological similarity between the nanocone tips and the neuronal processes, the existence of interspace at the interface between the cell body and the nanocones, and neurite bridging among the neighboring structures, which may induce the acceleration of neurite outgrowth. The flexible gold nanocone arrays can be a good supporting substrate of neuron culture with noble electrical and optical properties.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Ouro/farmacologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura
20.
Magn Reson Med ; 77(3): 951-960, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26914541

RESUMO

PURPOSE: To improve the temporal and spatial resolution of dynamic 13 C spiral chemical shift imaging via incoherent sampling and low-rank matrix completion (LRMC). METHODS: Spiral CSI data were both simulated and acquired in rats, and undersampling was implemented retrospectively and prospectively by pseudorandomly omitting a fraction of the spiral interleaves. Undersampled data were reconstructed with both LRMC and a conventional inverse nonuniform fast Fourier transform (iNUFFT) and compared with fully sampled data. RESULTS: Two-fold undersampling with LRMC reconstruction enabled a two-fold improvement in temporal or spatial resolution without significant artifacts or spatiotemporal distortion. Conversely, undersampling with iNUFFT reconstruction created strong artifacts that obscured the image. LRMC performed better at time points with strong metabolite signal. CONCLUSION: Incoherent undersampling and LRMC provides a way to increase the spatiotemporal resolution of spiral CSI without degrading data integrity. Magn Reson Med 77:951-960, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Ácido Pirúvico/metabolismo , Animais , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Rim/anatomia & histologia , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA