Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239838

RESUMO

Maximum tolerable dosing (MTD) of chemotherapeutics has long been the gold standard for aggressive malignancies. Recently, alternative dosing strategies have gained traction for their improved toxicity profiles and unique mechanisms of action, such as inhibition of angiogenesis and stimulation of immunity. In this article, we investigated whether extended exposure (EE) topotecan could improve long-term drug sensitivity by preventing drug resistance. To achieve significantly longer exposure times, we used a spheroidal model system of castration-resistant prostate cancer. We also used state-of-the-art transcriptomic analysis to further elucidate any underlying phenotypic changes that occurred in the malignant population following each treatment. We determined that EE topotecan had a much higher barrier to resistance relative to MTD topotecan and was able to maintain consistent efficacy throughout the study period (EE IC50 of 54.4 nM (Week 6) vs. MTD IC50 of 2200 nM (Week 6) vs. 83.8 nM IC50 for control (Week 6) vs. 37.8 nM IC50 for control (Week 0)). As a possible explanation for these results, we determined that MTD topotecan stimulated epithelial-mesenchymal transition (EMT), upregulated efflux pumps, and produced altered topoisomerases relative to EE topotecan. Overall, EE topotecan resulted in a more sustained treatment response and maintained a less aggressive malignant phenotype relative to MTD topotecan.


Assuntos
Transição Epitelial-Mesenquimal , Topotecan , Masculino , Animais , Topotecan/farmacologia , Topotecan/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistência a Medicamentos
2.
J Pharmacol Exp Ther ; 380(3): 180-201, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949650

RESUMO

Conventional treatment with taxanes (docetaxel-DTX or cabazitaxel-CBZ) increases the survival rates of patients with aggressive metastatic castration-resistant prostate cancer (mCRPC); however, most patients acquire resistance to taxanes. The andrographolide analog, 19-tert-butyldiphenylsilyl-8,7-epoxy andrographolide (3A.1), has shown anticancer activity against various cancers. In this study, we investigated the effect of 3A.1 alone and in combination with DTX/CBZ against mCRPC and their mechanism of action. Exposure to 3A.1 alone exhibited a dose- and time-dependent antitumor activity in mCRPC. Chou-Talalay's combination index (CI) values of all 3A.1 + TX combinations were less than 0.5, indicating synergism. Co-treatment of 3A.1 with TX reduced the required dose of DTX and CBZ (P < 0.05). Caspase assay (apoptosis) results concurred with in vitro cytotoxicity data. RNA sequencing (RNAseq), followed by ingenuity pathway analysis (IPA), identified that upregulation of heat-shock proteins (Hsp70, Hsp40, Hsp27, and Hsp90) and downregulation of MAT2A as the key player for 3A.1 response. Furthermore, the top treatment-induced differentially expressed genes (DEGs) belong to DNA damage, cell migration, hypoxia, autophagy (MMP1, MMP9, HIF-1α, Bag-3, H2AX, HMOX1, PSRC1), and cancer progression pathways. Most importantly, top downregulated DEG MAT2A has earlier been shown to be involved in cell migration and invasion. Furthermore, using in silico analysis on the Cancer Genome Atlas (TCGA) database, this study found that MAT2A and highly co-expressed (r > 0.7) genes, TRA2B and SF1, were associated with worse Gleason score and nodal metastasis status in prostate adenocarcinoma patients (PRAD-TCGA). Immunoblotting, comet, and migration assays corroborated these findings. These results suggest that 3A.1 may be useful in increasing the anticancer efficacy of taxanes to treat aggressive PCa. SIGNIFICANCE STATEMENT: The andrographolide analogue, 19-tert-butyldiphenylsilyl-8,7-epoxy andrographolide (3A.1), showed anticancer activity against metastatic castration-resistant and neuroendocrine variant prostate cancers (mCRPC/NEPC). Additionally, 3A.1 exhibited synergistic anticancer effect in combination with standard chemotherapy drugs docetaxel and cabazitaxel in mCRPC/NEPC. Post-treatment gene expression studies revealed that heat shock proteins (Hsp70, Hsp40, Hsp27, and Hsp90) and MAT2A are important in the mechanism of 3A.1 action and drug response. Furthermore, DNA damage, cell migration, hypoxia, and autophagy were crucial pathways for the anticancer activity of 3A.1.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Movimento Celular , Diterpenos , Docetaxel/uso terapêutico , Regulação para Baixo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/uso terapêutico , Proteínas de Choque Térmico/metabolismo , Humanos , Hipóxia , Masculino , Metionina Adenosiltransferase/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides/farmacologia , Taxoides/uso terapêutico , Regulação para Cima
3.
Biochemistry ; 58(45): 4530-4542, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31637906

RESUMO

Pheromone-binding protein (PBP) in male moth antennae transports pheromone to the olfactory receptor neuron by undergoing a pH-dependent conformational switch, from PBPB at higher pH to PBPA at lower pH, associated with ligand binding and release, respectively. The characteristic feature of the dramatic protein switch is the pH-dependent reversible coil-helix transition of the C-terminus. In the PBPB conformation at pH >6.0, the C-terminus is exposed to the solvent as a coil while the ligand occupies the hydrophobic pocket. However, in the PBPA conformation at acidic pH, the C-terminus switches to a helix and releases the ligand by outcompeting it for the hydrophobic pocket. In Antheraea polyphemus PBP1 (ApolPBP1), the C-terminus (P129-V142) is composed predominantly of hydrophobic residues except for three strategically located acidic residues: Asp132, Glu137, and Glu141. Here, we report for the first time on the consequences of the mutation of one or more acidic residues in the pH-driven reversible coil-helix transition of the ApolPBP1 C-terminus through biophysical characterization. Mutation of any single acidic residue in the C-terminus to its neutral counterpart destabilizes the helix formation at lower pH; these mutants exist as a mixture of both conformations. However, mutation of the two terminal acidic residues together knocks out the protein switch and adversely affects both ligand binding and release functions. Thus, these mutant proteins remain in the open (PBPB) conformation at all pH levels.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/fisiologia , Feromônios/metabolismo , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Proteínas de Insetos/química , Masculino , Modelos Moleculares , Mariposas/química , Conformação Proteica , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
4.
Protein Expr Purif ; 139: 43-48, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28728943

RESUMO

N-linked glycosylation of proteins is an essential and highly conserved co- and post-translational protein modification reaction that occurs in all eukaryotes. Oligosaccharyltransferase (OST), a multi-subunit membrane-associated enzyme complex, carries out this reaction. In the central reaction, a carbohydrate group is transferred to the side chain of a consensus asparagine residue in the newly synthesized protein. Genetic defects in humans cause a series of disorders known as congenital disorders of glycosylation (CDG) that include mental retardation, developmental delay, hypoglycemia etc. Complete loss of N-glycosylation is lethal in all organisms. In Saccharomyces cerevisiae, OST consists of nine non-identical protein subunits. Ost4p is the smallest subunit containing 36 residues. It bridges catalytic subunit Stt3p to Ost3p/Ost6p subunit. Mutation of Valine (V) at position 23 in Ost4p to Aspartate (D) causes defects in the N-glycosylation process. To understand the structure, function and role of Ost4p in N-glycosylation, characterization of Ost4p and its functionally important mutant/s are critical. We report the mutagenesis, heterologous overexpression, purification, reconstitution in DPC micelles and biophysical characterization of Ost4V23D and compare its secondary structure and conformation to that of Ost4p. CD and NMR data suggest that mutation of Val23 to Asp impacts the secondary structure and conformation of Ost4p.


Assuntos
Hexosiltransferases/química , Hexosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dicroísmo Circular , Escherichia coli/genética , Glicosilação , Hexosiltransferases/genética , Proteínas de Membrana/genética , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biochemistry ; 52(6): 1037-44, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23327454

RESUMO

Pheromone-binding proteins (PBPs) in lepidopteran moths selectively transport the hydrophobic pheromone molecules across the sensillar lymph to trigger the neuronal response. Moth PBPs are known to bind ligand at physiological pH and release it at acidic pH while undergoing a conformational change. Two molecular switches are considered to play a role in this mechanism: (i) protonation of His(70) and His(95) situated at one end of binding pocket and (ii) switch of the unstructured C-terminus at the other end of the binding pocket to a helix that enters the pocket. We have reported previously the role of the histidine-driven switch in ligand release for Antheraea polyphemus PBP1 (ApolPBP1). Here we show that the C-terminus plays a role in the ligand release and binding mechanism of ApolPBP1. The C-terminus truncated mutants of ApolPBP1 (ApolPBP1ΔP129-V142 and ApolPBP1H70A/H95AΔP129-V142) exist only in the bound conformation at all pH levels, and they fail to undergo pH- or ligand-dependent conformational switching. Although these proteins could bind ligands even at acidic pH unlike wild-type ApolPBP1, they had ~4-fold reduced affinity for the ligand at both acidic and physiological pH compared to that of wild-type ApolPBP1 and ApolPBP1H70A/H95A. Thus, apart from helping in ligand release at acidic pH, the C-terminus in ApolPBP1 also plays an important role in ligand binding and/or locking the ligand in the binding pocket. Our results are in stark contrast to those reported for BmorPBP and AtraPBP, where C-terminus truncated proteins had similar or increased pheromone binding affinity at any pH.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Feromônios/metabolismo , Proteínas Recombinantes/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mariposas , Mutação/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
6.
Blood Cancer J ; 13(1): 180, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057320

RESUMO

Patients with multiple myeloma (MM), an age-dependent neoplasm of antibody-producing plasma cells, have compromised immune systems and might be at increased risk for severe COVID-19 outcomes. This study characterizes risk factors associated with clinical indicators of COVID-19 severity and all-cause mortality in myeloma patients utilizing NCATS' National COVID Cohort Collaborative (N3C) database. The N3C consortium is a large, centralized data resource representing the largest multi-center cohort of COVID-19 cases and controls nationwide (>16 million total patients, and >6 million confirmed COVID-19+ cases to date). Our cohort included myeloma patients (both inpatients and outpatients) within the N3C consortium who have been diagnosed with COVID-19 based on positive PCR or antigen tests or ICD-10-CM diagnosis code. The outcomes of interest include all-cause mortality (including discharge to hospice) during the index encounter and clinical indicators of severity (i.e., hospitalization/emergency department/ED visit, use of mechanical ventilation, or extracorporeal membrane oxygenation (ECMO)). Finally, causal inference analysis was performed using the Coarsened Exact Matching (CEM) and Propensity Score Matching (PSM) methods. As of 05/16/2022, the N3C consortium included 1,061,748 cancer patients, out of which 26,064 were MM patients (8,588 were COVID-19 positive). The mean age at COVID-19 diagnosis was 65.89 years, 46.8% were females, and 20.2% were of black race. 4.47% of patients died within 30 days of COVID-19 hospitalization. Overall, the survival probability was 90.7% across the course of the study. Multivariate logistic regression analysis showed histories of pulmonary and renal disease, dexamethasone, proteasome inhibitor/PI, immunomodulatory/IMiD therapies, and severe Charlson Comorbidity Index/CCI were significantly associated with higher risks of severe COVID-19 outcomes. Protective associations were observed with blood-or-marrow transplant/BMT and COVID-19 vaccination. Further, multivariate Cox proportional hazard analysis showed that high and moderate CCI levels, International Staging System (ISS) moderate or severe stage, and PI therapy were associated with worse survival, while BMT and COVID-19 vaccination were associated with lower risk of death. Finally, matched sample average treatment effect on the treated (SATT) confirmed the causal effect of BMT and vaccination status as top protective factors associated with COVID-19 risk among US patients suffering from multiple myeloma. To the best of our knowledge, this is the largest nationwide study on myeloma patients with COVID-19.


Assuntos
COVID-19 , Mieloma Múltiplo , Feminino , Humanos , Masculino , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19/uso terapêutico , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/terapia , Fatores de Proteção , Teste para COVID-19 , Fatores de Risco , Vacinação
7.
Cancer Res Commun ; 3(7): 1286-1311, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37476073

RESUMO

Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC). Standard chemotherapy options for CRPC are docetaxel (DTX) and cabazitaxel, which increase median survival, although the development of resistance is common. Cancer stem-like cells possess mesenchymal phenotypes [epithelial-to-mesenchymal transition (EMT)] and play crucial roles in tumor initiation and progression of mCRPC. We have shown that low-dose continuous administration of topotecan (METRO-TOPO) inhibits prostate cancer growth by interfering with key cancer pathway genes. This study utilized bulk and single-cell or whole-transcriptome analysis [(RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)], and we observed greater expression of several EMT markers, including Vimentin, hyaluronan synthase-3, S100 calcium binding protein A6, TGFB1, CD44, CD55, and CD109 in European American and African American aggressive variant prostate cancer (AVPC) subtypes-mCRPC, neuroendocrine variant (NEPC), and taxane-resistant. The taxane-resistant gene FSCN1 was also expressed highly in single-cell subclonal populations in mCRPC. Furthermore, metronomic-topotecan single agent and combinations with DTX downregulated these EMT markers as well as CD44+ and CD44+/CD133+ "stem-like" cell populations. A microfluidic chip-based cell invasion assay revealed that METRO-TOPO treatment as a single agent or in combination with DTX was potentially effective against invasive prostate cancer spread. Our RNA-seq and scRNA-seq analysis were supported by in silico and in vitro studies, suggesting METRO-TOPO combined with DTX may inhibit oncogenic progression by reducing cancer stemness in AVPC through the inhibition of EMT markers and multiple oncogenic factors/pathways. Significance: The utilization of metronomic-like dosing regimens of topotecan alone and in combination with DTX resulted in the suppression of makers associated with EMT and stem-like cell populations in AVPC models. The identification of molecular signatures and their potential to serve as novel biomarkers for monitoring treatment efficacy and disease progression response to treatment efficacy and disease progression were achieved using bulk RNA-seq and single-cell-omics methodologies.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Topotecan , Masculino , Humanos , Docetaxel/farmacologia , Topotecan/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Administração Metronômica , Antagonistas de Androgênios/farmacologia , Transição Epitelial-Mesenquimal , Taxoides , Progressão da Doença , Proteínas de Transporte/farmacologia , Proteínas dos Microfilamentos/farmacologia
8.
Biochemistry ; 51(35): 6950-60, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22876914

RESUMO

A large number of cellular processes are mediated by protein-protein interactions, often specified by particular protein binding modules. PDZ domains make up an important class of protein-protein interaction modules that typically bind to the C-terminus of target proteins. These domains act as a scaffold where signaling molecules are linked to a multiprotein complex. Human glutaminase interacting protein (GIP), also known as tax interacting protein 1, is unique among PDZ domain-containing proteins because it is composed almost exclusively of a single PDZ domain rather than one of many domains as part of a larger protein. GIP plays pivotal roles in cellular signaling, protein scaffolding, and cancer pathways via its interaction with the C-terminus of a growing list of partner proteins. We have identified novel internal motifs that are recognized by GIP through combinatorial phage library screening. Leu and Asp residues in the consensus sequence were identified to be critical for binding to GIP through site-directed mutagenesis studies. Structure-based models of GIP bound to two different surrogate peptides determined from nuclear magnetic resonance constraints revealed that the binding pocket is flexible enough to accommodate either the smaller carboxylate (COO(-)) group of a C-terminal recognition motif or the bulkier aspartate side chain (CH(2)COO(-)) of an internal motif. The noncanonical ILGF loop in GIP moves in for the C-terminal motif but moves out for the internal recognition motifs, allowing binding to different partner proteins. One of the peptides colocalizes with GIP within human glioma cells, indicating that GIP might be a potential target for anticancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Glioma/química , Glioma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Domínios PDZ , Biblioteca de Peptídeos , Peptídeos/análise , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
9.
Blood Cancer J ; 12(3): 39, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264575

RESUMO

Multiple myeloma, the second-most common hematopoietic malignancy in the United States, still remains an incurable disease with dose-limiting toxicities and resistance to primary drugs like proteasome inhibitors (PIs) and Immunomodulatory drugs (IMiDs).We have created a computational pipeline that uses pharmacogenomics data-driven optimization-regularization/greedy algorithm to predict novel drugs ("secDrugs") against drug-resistant myeloma. Next, we used single-cell RNA sequencing (scRNAseq) as a screening tool to predict top combination candidates based on the enrichment of target genes. For in vitro validation of secDrugs, we used a panel of human myeloma cell lines representing drug-sensitive, innate/refractory, and acquired/relapsed PI- and IMiD resistance. Next, we performed single-cell proteomics (CyTOF or Cytometry time of flight) in patient-derived bone marrow cells (ex vivo), genome-wide transcriptome analysis (bulk RNA sequencing), and functional assays like CRISPR-based gene editing to explore molecular pathways underlying secDrug efficacy and drug synergy. Finally, we developed a universally applicable R-software package for predicting novel secondary therapies in chemotherapy-resistant cancers that outputs a list of the top drug combination candidates with rank and confidence scores.Thus, using 17AAG (HSP90 inhibitor) + FK866 (NAMPT inhibitor) as proof of principle secDrugs, we established a novel pipeline to introduce several new therapeutic options for the management of PI and IMiD-resistant myeloma.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Combinação de Medicamentos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/uso terapêutico
10.
Mucosal Immunol ; 15(2): 301-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34671116

RESUMO

Itaconate is produced from the mitochondrial TCA cycle enzyme aconitase decarboxylase (encoded by immune responsive gene1; Irg1) that exerts immunomodulatory function in myeloid cells. However, the role of the Irg1/itaconate pathway in dendritic cells (DC)-mediated airway inflammation and adaptive immunity to inhaled allergens, which are the primary antigen-presenting cells in allergic asthma, remains largely unknown. House dust mite (HDM)-challenged Irg1-/- mice displayed increases in eosinophilic airway inflammation, mucous cell metaplasia, and Th2 cytokine production with a mechanism involving impaired mite antigen presentations by DC. Adoptive transfer of HDM-pulsed DC from Irg1-deficient mice into naïve WT mice induced a similar phenotype of elevated type 2 airway inflammation and allergic sensitization. Untargeted metabolite analysis of HDM-pulsed DC revealed itaconate as one of the most abundant polar metabolites that potentially suppress mitochondrial oxidative damage. Furthermore, the immunomodulatory effect of itaconate was translated in vivo, where intranasal administration of 4-octyl itaconate 4-OI following antigen priming attenuated the manifestations of HDM-induced airway disease and Th2 immune response. Taken together, these data demonstrated for the first time a direct regulatory role of the Irg1/itaconate pathway in DC for the development of type 2 airway inflammation and suggest a possible therapeutic target in modulating allergic asthma.


Assuntos
Alérgenos , Células Dendríticas , Hidroliases , Succinatos , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Hidroliases/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Redes e Vias Metabólicas , Camundongos , Pyroglyphidae/imunologia , Succinatos/imunologia , Succinatos/metabolismo , Células Th2
11.
Front Oncol ; 12: 842200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646666

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy with dose-limiting toxicities and inter-individual variation in response/resistance to the standard-of-care/primary drugs, proteasome inhibitors (PIs), and immunomodulatory derivatives (IMiDs). Although newer therapeutic options are potentially highly efficacious, their costs outweigh the effectiveness. Previously, we have established that clofazimine (CLF) activates peroxisome proliferator-activated receptor-γ, synergizes with primary therapies, and targets cancer stem-like cells (CSCs) in drug-resistant chronic myeloid leukemia (CML) patients. In this study, we used a panel of human myeloma cell lines as in vitro model systems representing drug-sensitive, innate/refractory, and clonally-derived acquired/relapsed PI- and cereblon (CRBN)-negative IMiD-resistant myeloma and bone marrow-derived CD138+ primary myeloma cells obtained from patients as ex vivo models to demonstrate that CLF shows significant cytotoxicity against drug-resistant myeloma as single-agent and in combination with PIs and IMiDs. Next, using genome-wide transcriptome analysis (RNA-sequencing), single-cell proteomics (CyTOF; Cytometry by time-of-flight), and ingenuity pathway analysis (IPA), we identified novel pathways associated with CLF efficacy, including induction of ER stress, autophagy, mitochondrial dysfunction, oxidative phosphorylation, enhancement of downstream cascade of p65-NFkB-IRF4-Myc downregulation, and ROS-dependent apoptotic cell death in myeloma. Further, we also showed that CLF is effective in killing rare refractory subclones like side populations that have been referred to as myeloma stem-like cells. Since CLF is an FDA-approved drug and also on WHO's list of safe and effective essential medicines, it has strong potential to be rapidly re-purposed as a safe and cost-effective anti-myeloma drug.

12.
Cancers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497496

RESUMO

Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.

13.
J Agric Food Chem ; 69(46): 14013-14023, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34758619

RESUMO

Ostrinia nubilalis, a lepidopteran moth, also known as the European corn borer, has a major impact on the production of economically important crops in the United States and Europe. The female moth invites the male moth for mating through the release of pheromones, a volatile chemical signal. Pheromone binding proteins (PBPs) present in the male moth antennae are believed to pick up the pheromones, transport them across the aqueous sensillum lymph, and deliver them to the olfactory receptor neurons. Here we report for the first time the cloning, expression, refolding, purification, and structural characterization of Ostrinia nubilalis PBP3 (OnubPBP3). The recombinant protein showed nanomolar affinity to each isomer of the Ostrinia pheromones, E- and Z-11-tetradecenyl acetate. In a pH titration study by nuclear magnetic resonance, the protein exhibited an acid-induced unfolding at pH below 5.5. The molecular dynamics simulation study demonstrated ligand-induced conformational changes in the protein with both E- and Z-isomers of the Ostrinia pheromone. The simulation studies showed that while protein flexibility decreases upon binding to E-pheromone, it increases when bound to Z-pheromone. This finding suggests that the OnubPBP3 complex with E-pheromone is more stable than with Z-pheromone.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Mariposas , Atrativos Sexuais , Animais , Feromônios , Zea mays
14.
Front Pharmacol ; 12: 736951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938177

RESUMO

Repetitive, low-dose (metronomic; METRO) drug administration of some anticancer agents can overcome drug resistance and increase drug efficacy in many cancers, but the mechanisms are not understood fully. Previously, we showed that METRO dosing of topotecan (TOPO) is more effective than conventional (CONV) dosing in aggressive human prostate cancer (PCa) cell lines and in mouse tumor xenograft models. To gain mechanistic insights into METRO-TOPO activity, in this study we determined the effect of METRO- and CONV-TOPO treatment in a panel of human PCa cell lines representing castration-sensitive/resistant, androgen receptor (+/-), and those of different ethnicity on cell growth and gene expression. Differentially expressed genes (DEGs) were identified for METRO-TOPO therapy and compared to a PCa patient cohort and The Cancer Genome Atlas (TCGA) database. The top five DEGs were SERPINB5, CDKN1A, TNF, FOS, and ANGPT1. Ingenuity Pathway Analysis predicted several upstream regulators and identified top molecular networks associated with METRO dosing, including tumor suppression, anti-proliferation, angiogenesis, invasion, metastasis, and inflammation. Further, the top DEGs were associated with increase survival of PCa patients (TCGA database), as well as ethnic differences in gene expression patterns in patients and cell lines representing African Americans (AA) and European Americans (EA). Thus, we have identified candidate pharmacogenomic biomarkers and novel pathways associated with METRO-TOPO therapy that will serve as a foundation for further investigation and validation of METRO-TOPO as a novel treatment option for prostate cancers.

15.
J Biol Chem ; 284(46): 32167-77, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19758993

RESUMO

In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Mariposas/química , Animais , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ligantes , Lipídeos/fisiologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mariposas/metabolismo , Feromônios/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Sci Rep ; 8(1): 17105, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459333

RESUMO

Lepidopteran male moths have an extraordinarily sensitive olfactory system that is capable of detecting and responding to minute amounts of female-secreted pheromones over great distances. Pheromone-binding proteins (PBPs) in male antennae ferry the hydrophobic ligand across the aqueous lymph to the olfactory receptor neuron triggering the response. PBPs bind ligands at physiological pH of the lymph and release them at acidic pH near the receptor while undergoing a conformational change. In Anthereae polyphemus PBP1, ligand binding to the hydrophobic pocket and its release is regulated by two biological gates: His70 and His95 at one end of the pocket and C-terminus tail at the other end. Interestingly, in Asian corn borer Ostrinia furnacalis PBP2 (OfurPBP2), critical residues for ligand binding and release are substituted in both biological gates. The impact of these substitutions on the ligand binding and release mechanism in OfurPBP2 is not known. We report here overexpression of soluble OfurPBP2 and structural characterization at high and low pH by circular dichroism (CD) and NMR. Ligand binding and ab initio model development were carried out with fluorescence and small-angle X-ray scattering (SAXS) respectively. OfurPBP2 in solution at pH 6.5 is homogeneous, well-folded and has a compact globular shape.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Insetos/genética , Modelos Moleculares , Mariposas , Conformação Proteica , Homologia de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA