Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0176823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38179933

RESUMO

Lignocellulose is a renewable but complex material exhibiting high recalcitrance to enzymatic hydrolysis, which is attributed, in part, to the presence of covalent linkages between lignin and polysaccharides in the plant cell wall. Glucuronoyl esterases from carbohydrate esterase family 15 (CE15) have been proposed as an aid in reducing this recalcitrance by cleaving ester bonds found between lignin and glucuronoxylan. In the Bacteroidota phylum, some species organize genes related to carbohydrate metabolism in polysaccharide utilization loci (PULs) which encode all necessary proteins to bind, deconstruct, and respond to a target glycan. Bioinformatic analyses identified CE15 members in some PULs that appear to not target the expected glucuronoxylan. Here, five CE15 members from such PULs were investigated with the aim of gaining insights on their biological roles. The selected targets were characterized using glucuronoyl esterase model substrates and with a new synthetic molecule mimicking a putative ester linkage between pectin and lignin. The CE15 enzyme from Phocaeicola vulgatus was structurally determined by X-ray crystallography both with and without carbohydrate ligands with galacturonate binding in a distinct conformation than that of glucuronate. We further explored whether these CE15 enzymes could act akin to pectin methylesterases on pectin-rich biomass but did not find evidence to support the proposed activity. Based on the evidence gathered, the CE15 enzymes in the PULs expected to degrade pectin could be involved in cleavage of uronic acid esters in rhamnogalacturonans.IMPORTANCEThe plant cell wall is a highly complex matrix, and while most of its polymers interact non-covalently, there are also covalent bonds between lignin and carbohydrates. Bonds between xylan and lignin are known, such as the glucuronoyl ester bonds that are cleavable by CE15 enzymes. Our work here indicates that enzymes from CE15 may also have other activities, as we have discovered enzymes in PULs proposed to target other polysaccharides, including pectin. Our study represents the first investigation of such enzymes. Our first hypothesis that the enzymes would act as pectin methylesterases was shown to be false, and we instead propose that they may cleave other esters on complex pectins such as rhamnogalacturonan II. The work presents both the characterization of five novel enzymes and can also provide indirect information about the components of the cell wall itself, which is a highly challenging material to chemically analyze in fine detail.


Assuntos
Lignina , Polissacarídeos , Lignina/metabolismo , Hidrólise , Pectinas , Ésteres
2.
Appl Microbiol Biotechnol ; 108(1): 335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747981

RESUMO

Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.


Assuntos
Zea mays , Especificidade por Substrato , Esterases/genética , Esterases/metabolismo , Esterases/química , Lignina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Filogenia
3.
J Biol Chem ; 298(4): 101758, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202648

RESUMO

Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gallic acid from aromatic-sugar complexes. However, only few tannases have previously been studied in detail. Here, for the first time, we biochemically and structurally characterize three tannases from a single organism, the anaerobic bacterium Clostridium butyricum, which inhabits both soil and gut environments. The enzymes were named CbTan1-3, and we show that each one exhibits a unique substrate preference on a range of galloyl ester model substrates; CbTan1 and 3 demonstrated preference toward galloyl esters linked to glucose, while CbTan2 was more promiscuous. All enzymes were also active on oak bark extractives. Furthermore, we solved the crystal structure of CbTan2 and produced homology models for CbTan1 and 3. In each structure, the catalytic triad and gallate-binding regions in the core domain were found in very similar positions in the active site compared with other bacterial tannases, suggesting a similar mechanism of action among these enzymes, though large inserts in each enzyme showcase overall structural diversity. In conclusion, the varied structural features and substrate specificities of the C. butyricum tannases indicate that they have different biological roles and could further be used in development of new valorization strategies for renewable plant biomass.


Assuntos
Hidrolases de Éster Carboxílico , Clostridium butyricum , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Clostridium butyricum/enzimologia , Estrutura Terciária de Proteína , Especificidade por Substrato , Taninos/química
4.
J Biol Chem ; 296: 100500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667545

RESUMO

The gut microbiota plays a central role in human health by enzymatically degrading dietary fiber and concomitantly excreting short chain fatty acids that are associated with manifold health benefits. The polysaccharide xylan is abundant in dietary fiber but noncarbohydrate decorations hinder efficient cleavage by glycoside hydrolases (GHs) and need to be addressed by carbohydrate esterases (CEs). Enzymes from carbohydrate esterase families 1 and 6 (CE1 and 6) perform key roles in xylan degradation by removing feruloyl and acetate decorations, yet little is known about these enzyme families especially with regard to their diversity in activity. Bacteroidetes bacteria are dominant members of the microbiota and often encode their carbohydrate-active enzymes in multigene polysaccharide utilization loci (PULs). Here we present the characterization of three CEs found in a PUL encoded by the gut Bacteroidete Dysgonomonas mossii. We demonstrate that the CEs are functionally distinct, with one highly efficient CE6 acetyl esterase and two CE1 enzymes with feruloyl esterase activities. One multidomain CE1 enzyme contains two CE1 domains: an N-terminal domain feruloyl esterase, and a C-terminal domain with minimal activity on model substrates. We present the structure of the C-terminal CE1 domain with the carbohydrate-binding module that bridges the two CE1 domains, as well as a complex of the same protein fragment with methyl ferulate. The investment of D. mossii in producing multiple CEs suggests that improved accessibility of xylan for GHs and cleavage of covalent polysaccharide-polysaccharide and lignin-polysaccharide bonds are important enzyme activities in the gut environment.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Esterases/metabolismo , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Metabolismo dos Carboidratos , Humanos , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
5.
Biochemistry ; 60(27): 2206-2220, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34180241

RESUMO

The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which incorporates two catalytic domains, a xylanase and a glucuronoyl esterase, and five carbohydrate-binding modules (CBMs) from families 9 and 22. The xylanase and glucuronoyl esterase catalytic domains were recently biochemically characterized, as was the ability of the individual CBMs to bind insoluble polysaccharides. Here, we further probed the abilities of the different CBMs from CkXyn10C-GE15A to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis, isothermal titration calorimetry, and differential scanning fluorimetry. The results revealed additional binding properties of the proteins compared to the former studies on insoluble polysaccharides. Collectively, the results show that all five CBMs have their own distinct binding preferences and appear to complement each other and the catalytic domains in targeting complex cell wall polysaccharides. Additionally, through renewed efforts, we have achieved partial structural characterization of this complex multidomain protein. We have determined the structures of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A) by X-ray crystallography. CBM9.3 is the second CBM9 structure determined to date and was shown to bind oligosaccharide ligands at the same site but in a different binding mode compared to that of the previously determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal and bacterial glucuronoyl esterase structures as it lacks two inserted loop regions typical of bacterial enzymes and a third loop has an atypical structure. We also report small-angle X-ray scattering measurements of the N-terminal CBM22.1-CBM22.2-Xyn10C construct, indicating a compact arrangement at room temperature.


Assuntos
Proteínas de Bactérias/química , Caldicellulosiruptor/enzimologia , Esterases/química , Xilosidases/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Caldicellulosiruptor/química , Caldicellulosiruptor/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Esterases/metabolismo , Modelos Moleculares , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Temperatura , Xilosidases/metabolismo
6.
J Biol Chem ; 294(52): 19978-19987, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31740581

RESUMO

Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact and catalyze degradation of their natural substrates are sparse, calling for thorough enzyme structure-function studies. Presented here is a structural and mechanistic investigation of the bacterial GE OtCE15A. GEs belong to the carbohydrate esterase family 15 (CE15), which is in turn part of the larger α/ß-hydrolase superfamily. GEs contain a Ser-His-Asp/Glu catalytic triad, but the location of the catalytic acid in GEs has been shown to be variable, and OtCE15A possesses two putative catalytic acidic residues in the active site. Through site-directed mutagenesis, we demonstrate that these residues are functionally redundant, possibly indicating the evolutionary route toward new functionalities within the family. Structures determined with glucuronate, in both native and covalently bound intermediate states, and galacturonate provide insights into the catalytic mechanism of CE15. A structure of OtCE15A with the glucuronoxylooligosaccharide 23-(4-O-methyl-α-d-glucuronyl)-xylotriose (commonly referred to as XUX) shows that the enzyme can indeed interact with polysaccharides from the plant cell wall, and an additional structure with the disaccharide xylobiose revealed a surface binding site that could possibly indicate a recognition mechanism for long glucuronoxylan chains. Collectively, the results indicate that OtCE15A, and likely most of the CE15 family, can utilize esters of glucuronoxylooligosaccharides and support the proposal that these enzymes work on lignin-carbohydrate complexes in plant biomass.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Lignina/metabolismo , Verrucomicrobia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Dissacarídeos/química , Dissacarídeos/metabolismo , Esterases/química , Esterases/genética , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Cinética , Lignina/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 294(16): 6635-6644, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30814248

RESUMO

Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages found between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact with their natural substrates are sparse, calling for thorough structure-function studies. Presented here is the structure and biochemical characterization of a GE, TtCE15A, from the bacterium Teredinibacter turnerae, a symbiont of wood-boring shipworms. To gain deeper insight into enzyme-substrate interactions, inhibition studies were performed with both the WT TtCE15A and variants in which we, by using site-directed mutagenesis, substituted residues suggested to have key roles in binding to or interacting with the aromatic and carbohydrate structures of its uronic acid ester substrates. Our results support the hypothesis that two aromatic residues (Phe-174 and Trp-376), conserved in bacterial GEs, interact with aromatic and carbohydrate structures of these substrates in the enzyme active site, respectively. The solved crystal structure of TtCE15A revealed features previously not observed in either fungal or bacterial GEs, with a large inserted N-terminal region neighboring the active site and a differently positioned residue of the catalytic triad. The findings highlight key interactions between GEs and complex lignin-carbohydrate ester substrates and advance our understanding of the substrate specificities of these enzymes in biomass conversion.


Assuntos
Proteínas de Bactérias/química , Carboidratos/química , Esterases/química , Gammaproteobacteria/enzimologia , Hidrocarbonetos Aromáticos/química , Ácidos Urônicos/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Esterases/genética , Gammaproteobacteria/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Relação Estrutura-Atividade
8.
J Biol Chem ; 291(14): 7669-86, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26867578

RESUMO

The bacterial catabolism of lignin and its breakdown products is of interest for applications in industrial processing of ligno-biomass. The gallate degradation pathway ofPseudomonas putidaKT2440 requires a 4-carboxy-2-hydroxymuconate (CHM) hydratase (GalB), which has a 12% sequence identity to a previously identified CHM hydratase (LigJ) fromSphingomonassp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-LN-acetylglucosamine deacetylase family; GalB is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereospecificity as GalB, providing an example of convergent evolution for catalytic conversion of a common metabolite in bacterial aromatic degradation pathways. Purified GalB contains a bound Zn(2+)cofactor; however the enzyme is capable of using Fe(2+)and Co(2+)with similar efficiency. The general base aspartate in the PIG-L deacetylases is an alanine in GalB; replacement of the alanine with aspartate decreased the GalB catalytic efficiency for CHM by 9.5 × 10(4)-fold, and the variant enzyme did not have any detectable hydrolase activity. Kinetic analyses and pH dependence studies of the wild type and variant enzymes suggested roles for Glu-48 and His-164 in the catalytic mechanism. A comparison with the PIG-L deacetylases led to a proposed mechanism for GalB wherein Glu-48 positions and activates the metal-ligated water for the hydration reaction and His-164 acts as a catalytic acid.


Assuntos
Proteínas de Bactérias/química , Hidroxibenzoatos/química , Pseudomonas putida/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidroxibenzoatos/metabolismo , Cinética , Pseudomonas putida/genética
9.
Biochemistry ; 53(3): 542-53, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24359411

RESUMO

4-Hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolases are class II (divalent metal ion dependent) pyruvate aldolases from the meta cleavage pathways of protocatechuate and gallate. The enzyme from Pseudomonas putida F1 is structurally similar to a group of proteins termed regulators of RNase E activity A (RraA) that bind to the regulatory domain of RNase E and inhibit the ribonuclease activity in certain bacteria. Analysis of homologous RraA-like proteins from varying species revealed that they share sequence conservation within the active site of HMG/CHA aldolase. In particular, the P. putida F1 HMG/CHA aldolase has a D-X20-R-D motif, whereas a G-X20-R-D-X2-E/D motif is observed in the structures of the RraA-like proteins from Thermus thermophilus HB8 (TtRraA) and Saccharomyces cerevisiae S288C (Yer010Cp) that may support metal binding. TtRraA and Yer010Cp were found to contain HMG aldolase and oxaloacetate decarboxylase activities. Similar to the P. putida F1 HMG/CHA aldolase, both TtRraA and Yer010Cp enzymes required divalent metal ions for activity and were competitively inhibited by oxalate, a pyruvate enolate analogue, suggesting a common mechanism among the enzymes. The RraA from Escherichia coli (EcRraA) lacked detectable C-C lyase activity. Upon restoration of the G-X20-R-D-X2-E/D motif, by site-specific mutagenesis, the EcRraA variant was able to catalyze oxaloacetate decarboxylation. Sequence analysis of RraA-like gene products found across all the domains of life revealed conservation of the metal binding motifs that can likely support a divalent metal ion-dependent enzyme reaction either in addition to or in place of the putative RraA function.


Assuntos
Aldeído Liases/química , Proteínas de Bactérias/química , Aldeído Liases/genética , Aldeído Liases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Consenso , Endorribonucleases/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
10.
N Biotechnol ; 82: 14-24, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38688408

RESUMO

The valorization of lignocellulosic biomass, derived from various bio-waste materials, has received considerable attention as a sustainable approach to improve production chains while reducing environmental impact. Microbial enzymes have emerged as key players in the degradation of polysaccharides, offering versatile applications in biotechnology and industry. Among these enzymes, glycoside hydrolases (GHs) play a central role. Xylanases, in particular, are used in a wide range of applications and are essential for the production of xylose, which can be fermented into bioethanol or find use in many other industries. Currently, fungal secretomes dominate as the main reservoir of lignocellulolytic enzymes, but thermophilic microorganisms offer notable advantages in terms of enzyme stability and production efficiency. Here we present the genomic characterization of Geobacillus stearothermophilus GF16 to identify genes encoding putative enzymes involved in lignocellulose degradation. Thermostable GHs secreted by G. stearothermophilus GF16 were investigated and found to be active on different natural polysaccharides and synthetic substrates, revealing an array of inducible GH activities. In particular, the concentrated secretome possesses significant thermostable xylanase and ß-xylosidase activities (5 ×103 U/L and 1.7 ×105 U/L, respectively), highlighting its potential for application in biomass valorization. We assessed the hemicellulose hydrolysis capabilities of various agri-food wastes using the concentrated secretome of the strain cultivated on xylan. An impressive 300-fold increase in xylose release compared to a commercially available cocktail was obtained with the secretome, underscoring the remarkable efficacy of this approach.


Assuntos
Biomassa , Geobacillus stearothermophilus , Polissacarídeos , Xilose , Geobacillus stearothermophilus/enzimologia , Geobacillus stearothermophilus/genética , Xilose/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Genômica , Genoma Bacteriano , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química
11.
Nat Commun ; 15(1): 3429, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653764

RESUMO

Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to ß-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.


Assuntos
Proteínas de Bactérias , beta-Glucanas , beta-Glucanas/metabolismo , beta-Glucanas/química , Cristalografia por Raios X , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Modelos Moleculares
12.
FEBS Lett ; 597(13): 1779-1791, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37143387

RESUMO

Copper radical oxidases (CROs) are redox enzymes able to oxidize alcohols or aldehydes, while only requiring a single copper atom as cofactor. Studied CROs are found in one of two subfamilies within the Auxiliary Activities family 5 (AA5) in the carbohydrate-active enzymes database. We here characterize an AA5 enzyme outside the subfamily classification from the opportunistic bacterial pathogen Burkholderia pseudomallei, which curiously was fused to a carbohydrate esterase family 3 domain. The enzyme was shown to be a promiscuous primary alcohol oxidase, with an activity profile similar to enzymes from subfamily 2. The esterase domain was inactive on all tested substrates, and structural predictions revealed this being an effect of crippling substitutions in the expected active site residues.


Assuntos
Burkholderia pseudomallei , Burkholderia pseudomallei/genética , Cobre/química , Oxirredutases do Álcool , Carboidratos
13.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 545-555, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227091

RESUMO

In plant cell walls, covalent bonds between polysaccharides and lignin increase recalcitrance to degradation. Ester bonds are known to exist between glucuronic acid moieties on glucuronoxylan and lignin, and these can be cleaved by glucuronoyl esterases (GEs) from carbohydrate esterase family 15 (CE15). GEs are found in both bacteria and fungi, and some microorganisms also encode multiple GEs, although the reason for this is still not fully clear. The fungus Lentithecium fluviatile encodes three CE15 enzymes, of which two have previously been heterologously produced, although neither was active on the tested model substrate. Here, one of these, LfCE15C, has been investigated in detail using a range of model and natural substrates and its structure has been solved using X-ray crystallography. No activity could be verified on any tested substrate, but biophysical assays indicate an ability to bind to complex carbohydrate ligands. The structure further suggests that this enzyme, which possesses an intact catalytic triad, might be able to bind and act on more extensively decorated xylan chains than has been reported for other CE15 members. It is speculated that rare glucuronoxylans decorated at the glucuronic acid moiety may be the true targets of LfCE15C and other CE15 family members with similar sequence characteristics.


Assuntos
Esterases , Lignina , Esterases/química , Esterases/metabolismo , Lignina/metabolismo , Xilanos , Polissacarídeos , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Especificidade por Substrato
14.
Nat Commun ; 13(1): 1449, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304453

RESUMO

Glucuronoyl esterases (GEs) are α/ß serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization.


Assuntos
Esterases , Hidrolases , Biomassa , Catálise , Esterases/metabolismo
15.
J Biol Chem ; 285(47): 36608-15, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20843800

RESUMO

4-Hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate (HMG/CHA) aldolase from Pseudomonas putida F1 catalyzes the last step of the bacterial protocatechuate 4,5-cleavage pathway. The preferred substrates of the enzyme are 2-keto-4-hydroxy acids with a 4-carboxylate substitution. The enzyme also exhibits oxaloacetate decarboxylation and pyruvate α-proton exchange activity. Sodium oxalate is a competitive inhibitor of the aldolase reaction. The pH dependence of k(cat)/K(m) and k(cat) for the enzyme is consistent with a single deprotonation with pK(a) values of 8.0 ± 0.1 and 7.0 ± 0.1 for free enzyme and enzyme substrate complex, respectively. The 1.8 Å x-ray structure shows a four-layered α-ß-ß-α sandwich structure with the active site at the interface of two adjacent subunits of a hexamer; this fold resembles the RNase E inhibitor, RraA, but is novel for an aldolase. The catalytic site contains a magnesium ion ligated by Asp-124 as well as three water molecules bound by Asp-102 and Glu-199'. A pyruvate molecule binds the magnesium ion through both carboxylate and keto oxygen atoms, completing the octahedral geometry. The carbonyl oxygen also forms hydrogen bonds with the guanadinium group of Arg-123, which site-directed mutagenesis confirms is essential for catalysis. A mechanism for HMG/CHA aldolase is proposed on the basis of the structure, kinetics, and previously established features of other aldolase mechanisms.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Evolução Molecular , Hidroxibenzoatos/metabolismo , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Pseudomonas putida/enzimologia , Aldeído Liases/genética , Cristalização , Cristalografia por Raios X , Cinética , Ácido Oxaloacético/metabolismo , Oxo-Ácido-Liases/genética , Piruvatos/metabolismo , Especificidade por Substrato
16.
Sci Rep ; 11(1): 17662, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480044

RESUMO

Bacteroidetes are efficient degraders of complex carbohydrates, much thanks to their use of polysaccharide utilization loci (PULs). An integral part of PULs are highly specialized carbohydrate-active enzymes, sometimes composed of multiple linked domains with discrete functions-multicatalytic enzymes. We present the biochemical characterization of a multicatalytic enzyme from a large PUL encoded by the gut bacterium Bacteroides eggerthii. The enzyme, BeCE15A-Rex8A, has a rare and novel architecture, with an N-terminal carbohydrate esterase family 15 (CE15) domain and a C-terminal glycoside hydrolase family 8 (GH8) domain. The CE15 domain was identified as a glucuronoyl esterase (GE), though with relatively poor activity on GE model substrates, attributed to key amino acid substitutions in the active site compared to previously studied GEs. The GH8 domain was shown to be a reducing-end xylose-releasing exo-oligoxylanase (Rex), based on having activity on xylooligosaccharides but not on longer xylan chains. The full-length BeCE15A-Rex8A enzyme and the Rex domain were capable of boosting the activity of a commercially available GH11 xylanase on corn cob biomass. Our research adds to the understanding of multicatalytic enzyme architectures and showcases the potential of discovering novel and atypical carbohydrate-active enzymes from mining PULs.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Glicosídeo Hidrolases/genética , Humanos , Polissacarídeos/genética , Polissacarídeos/metabolismo
17.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1019-1026, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342275

RESUMO

The thermophilic fungus Malbranchea cinnamomea contains a host of enzymes that enable its ability as an efficient degrader of plant biomass and that could be mined for industrial applications. This thermophilic fungus has been studied and found to encode eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), which collectively possess different substrate specificities for a range of plant cell-wall-related polysaccharides and oligosaccharides. To gain greater insight into the molecular determinants defining the different specificities, structural studies were pursued and the structure of McAA9F was determined. The enzyme contains the immunoglobulin-like fold typical of previously solved AA9 LPMO structures, but contains prominent differences in the loop regions found on the surface of the substrate-binding site. Most significantly, McAA9F has a broad substrate specificity, with activity on both crystalline and soluble polysaccharides. Moreover, it contains a small loop in a region where a large loop has been proposed to govern specificity towards oligosaccharides. The presence of the small loop leads to a considerably flatter and more open surface that is likely to enable the broad specificity of the enzyme. The enzyme contains a succinimide residue substitution, arising from intramolecular cyclization of Asp10, at a position where several homologous members contain an equivalent residue but cyclization has not previously been observed. This first structure of an AA9 LPMO from M. cinnamomea aids both the understanding of this family of enzymes and the exploration of the repertoire of industrially relevant lignocellulolytic enzymes from this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Onygenales/metabolismo , Especificidade por Substrato
18.
Biotechnol Biofuels ; 13: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266006

RESUMO

BACKGROUND: Plant biomass is an abundant and renewable carbon source that is recalcitrant towards both chemical and biochemical degradation. Xylan is the second most abundant polysaccharide in biomass after cellulose, and it possesses a variety of carbohydrate substitutions and non-carbohydrate decorations which can impede enzymatic degradation by glycoside hydrolases. Carbohydrate esterases are able to cleave the ester-linked decorations and thereby improve the accessibility of the xylan backbone to glycoside hydrolases, thus improving the degradation process. Enzymes comprising multiple catalytic glycoside hydrolase domains on the same polypeptide have previously been shown to exhibit intramolecular synergism during degradation of biomass. Similarly, natively fused carbohydrate esterase domains are encoded by certain bacteria, but whether these enzymes can result in similar synergistic boosts in biomass degradation has not previously been evaluated. RESULTS: Two carbohydrate esterases with similar architectures, each comprising two distinct physically linked catalytic domains from families 1 (CE1) and 6 (CE6), were selected from xylan-targeting polysaccharide utilization loci (PULs) encoded by the Bacteroidetes species Bacteroides ovatus and Flavobacterium johnsoniae. The full-length enzymes as well as the individual catalytic domains showed activity on a range of synthetic model substrates, corn cob biomass, and Japanese beechwood biomass, with predominant acetyl esterase activity for the N-terminal CE6 domains and feruloyl esterase activity for the C-terminal CE1 domains. Moreover, several of the enzyme constructs were able to substantially boost the performance of a commercially available xylanase on corn cob biomass (close to twofold) and Japanese beechwood biomass (up to 20-fold). Interestingly, a significant improvement in xylanase biomass degradation was observed following addition of the full-length multidomain enzyme from B. ovatus versus the addition of its two separated single domains, indicating an intramolecular synergy between the esterase domains. Despite high sequence similarities between the esterase domains from B. ovatus and F. johnsoniae, their addition to the xylanolytic reaction led to different degradation patterns. CONCLUSION: We demonstrated that multidomain carbohydrate esterases, targeting the non-carbohydrate decorations on different xylan polysaccharides, can considerably facilitate glycoside hydrolase-mediated hydrolysis of xylan and xylan-rich biomass. Moreover, we demonstrated for the first time a synergistic effect between the two fused catalytic domains of a multidomain carbohydrate esterase.

19.
Biotechnol Biofuels ; 13: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190113

RESUMO

BACKGROUND: An economically viable production of biofuels and biochemicals from lignocellulose requires microorganisms that can readily convert both the cellulosic and hemicellulosic fractions into product. The yeast Candida intermedia displays a high capacity for uptake and conversion of several lignocellulosic sugars including the abundant pentose d-xylose, an underutilized carbon source since most industrially relevant microorganisms cannot naturally ferment it. Thus, C. intermedia constitutes an important source of knowledge and genetic information that could be transferred to industrial microorganisms such as Saccharomyces cerevisiae to improve their capacity to ferment lignocellulose-derived xylose. RESULTS: To understand the genetic determinants that underlie the metabolic properties of C. intermedia, we sequenced the genomes of both the in-house-isolated strain CBS 141442 and the reference strain PYCC 4715. De novo genome assembly and subsequent analysis revealed C. intermedia to be a haploid species belonging to the CTG clade of ascomycetous yeasts. The two strains have highly similar genome sizes and number of protein-encoding genes, but they differ on the chromosomal level due to numerous translocations of large and small genomic segments. The transcriptional profiles for CBS 141442 grown in medium with either high or low concentrations of glucose and xylose were determined through RNA-sequencing analysis, revealing distinct clusters of co-regulated genes in response to different specific growth rates, carbon sources and osmotic stress. Analysis of the genomic and transcriptomic data also identified multiple xylose reductases, one of which displayed dual NADH/NADPH co-factor specificity that likely plays an important role for co-factor recycling during xylose fermentation. CONCLUSIONS: In the present study, we performed the first genomic and transcriptomic analysis of C. intermedia and identified several novel genes for conversion of xylose. Together the results provide insights into the mechanisms underlying saccharide utilization in C. intermedia and reveal potential target genes to aid in xylose fermentation in S. cerevisiae.

20.
Sci Rep ; 10(1): 13775, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792608

RESUMO

Chitin is one of the most abundant renewable organic materials found on earth. The chitin utilization locus in Flavobacterium johnsoniae, which encodes necessary proteins for complete enzymatic depolymerization of crystalline chitin, has recently been characterized but no detailed structural information on the enzymes was provided. Here we present protein structures of the F. johnsoniae chitobiase (FjGH20) and chitinase B (FjChiB). FjGH20 is a multi-domain enzyme with a helical domain not before observed in other chitobiases and a domain organization reminiscent of GH84 (ß-N-acetylglucosaminidase) family members. The structure of FjChiB reveals that the protein lacks loops and regions associated with exo-acting activity in other chitinases and instead has a more solvent accessible substrate binding cleft, which is consistent with its endo-chitinase activity. Additionally, small angle X-ray scattering data were collected for the internal 70 kDa region that connects the N- and C-terminal chitinase domains of the unique 158 kDa multi-domain chitinase A (FjChiA). The resulting model of the molecular envelope supports bioinformatic predictions of the region comprising six domains, each with similarities to either Fn3-like or Ig-like domains. Taken together, the results provide insights into chitin utilization by F. johnsoniae and reveal structural diversity in bacterial chitin metabolism.


Assuntos
Acetilglucosaminidase/metabolismo , Domínio Catalítico/genética , Quitina/metabolismo , Quitinases/metabolismo , Flavobacterium/enzimologia , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/genética , Cristalografia por Raios X , Flavobacterium/genética , Flavobacterium/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA