Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(42): 28262-9, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25921085

RESUMO

The occurrence of a very efficient non-resonant energy transfer process forming ultrasmall Au-Ag nanoalloy clusters and Er(3+) ions is investigated in silica. The enhancement of the room temperature Er(3+) emission efficiency by an order of magnitude is achieved by coupling rare-earth ions to molecule-like (Au(x)Ag(1-x))N alloy nanoclusters with N = 10-15 atoms and x = 0.6 obtained by optimized sequential ion implantation on Er-implanted silica. For comparison, AuN nanoclusters obtained by the same approach and with the same size and numerical density showed an enhancement by only a factor of 2 with respect to pure Er emission, demonstrating the beneficial effect of using nanoalloyed clusters. The temperature evolution of the energy transfer process is investigated by photoluminescence and exhibits a maximum efficiency at about 600 °C, where the clusters reach the optimal size and the silica matrix completely recovers the implantation damage. The nanoalloy cluster composition and size have been studied by EXAFS analysis, which indicated a stronger Ag-O interaction with respect to the Au-O one and a preferential location of the Ag atoms at the nanoalloy cluster surface.


Assuntos
Ligas , Érbio/química , Ouro/química , Nanoestruturas , Teoria Quântica , Dióxido de Silício/química , Prata/química
2.
Phys Chem Chem Phys ; 16(29): 15158-63, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24935519

RESUMO

Sub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er(3+) ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminescence characterization of Er and Au co-implanted silica systems in which a different degree of coupling between Er(3+) ions and Au nanoclusters is obtained. The results allow us to definitely demonstrate the short-range nature of the interaction in agreement with non-radiative energy-transfer mechanisms. Moreover, an upper limit to the interaction length is also set by the Au-Au intercluster semi-distance which is smaller than 2.4 nm in the present case.

3.
Microsc Microanal ; 16(4): 456-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20566003

RESUMO

Lipid-containing nanostructures, in the form of solid lipid nanoparticles or iron oxide nanoparticles (NPs) coated with a lipid shell, were used as case studies for assessing and optimizing staining for transmission electron microscopy structural and compositional characterization. These systems are of paramount importance as drug delivery systems or as bio-compatible contrast agents. In particular, we have treated the systems with a negative (phospshotungstic acid) or with a positive (osmium tetroxide) staining agent. For iron-oxide NPs coated with the lipid shell, negative staining was more efficient with respect to the positive one. Nevertheless, in particular cases the combination of the two staining procedures provided more complete morphological and compositional characterization of the particles.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Coloração e Rotulagem/métodos , Sistemas de Liberação de Medicamentos , Lipídeos , Nanopartículas
4.
Opt Express ; 15(16): 10097-102, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19547359

RESUMO

A full-interaction electromagnetic approach is applied to interpret the local- and far-field properties of AuAg alloy nanoplanets (i.e. a central cluster surrounded by small "satellite" clusters very close to its surface) fabricated in silica by ion implantation and ion irradiation techniques. Optical extinction spectroscopy reveals a large plasmon redshift which is dependent on the irradiation conditions. Simulations strongly suggest that the peculiar topological arrangement of the satellite clusters is responsible for the observed plasmonic features. Theoretical results also indicate that strong local-field enhancement is obtained between coupled clusters. Calculations for Ag models show that enhancement factors as high as ~100 are readily achievable.

5.
Nanoscale ; 7(19): 8968-77, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25921415

RESUMO

The very early steps of Au metal cluster formation in Er-doped silica have been investigated by high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). A combined analysis of the near-edge and extended part of the experimental spectra shows that Au cluster nucleation starts from a few Au and O atoms covalently interconnected, likely in the presence of embryonic Au-Au correlation. The first Au clusters, characterized by a well defined Au-Au coordination distance, form upon 400 °C inert annealing. The estimated upper limit of the Gibbs free energy for the associated heterogeneous nucleation is 0.06 eV per atom, suggesting that the Au nucleation is assisted by matrix defects, most likely non-bridging oxygen atoms. The experimental results indicate that the formed subnanometer Au clusters can be applied as effective core-shell systems in which the Au atoms of the 'core' develop a metallic character, whereas the Au atoms in the 'shell' can retain a partially covalent bond with O atoms of the silica matrix. High structural disorder at the Au site is found upon neutral annealing at a moderate temperature (600 °C), likely driven by the configurational disorder of the defective silica matrix. A suitable choice of the Au concentration and annealing temperature allows tailoring of the Au cluster size in the sub-nanometer range. The interaction of the Au cluster surface with the surrounding silica matrix is likely responsible for the infrared luminescence previously reported on the same systems.

6.
Nanoscale ; 7(29): 12411-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26129696

RESUMO

The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid-state nanophotonic devices with enhanced ultrafast nonlinear optical properties.

7.
Biodivers Data J ; (3): e4750, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892924

RESUMO

Fauna Europaea provides a public web-service with an index of scientific names (including synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Coleoptera represent a huge assemblage of holometabolous insects, including as a whole more than 200 recognized families and some 400,000 described species worldwide. Basic information is summarized on their biology, ecology, economic relevance, and estimated number of undescribed species worldwide. Little less than 30,000 species are listed from Europe. The Coleoptera 2 section of the Fauna Europaea database (Archostemata, Myxophaga, Adephaga and Polyphaga excl. the series Elateriformia, Scarabaeiformia, Staphyliniformia and the superfamily Curculionoidea) encompasses 80 families (according to the previously accepted family-level systematic framework) and approximately 13,000 species. Tabulations included a complete list of the families dealt with, the number of species in each, the names of all involved specialists, and, when possible, an estimate of the gaps in terms of total number of species at an European level. A list of some recent useful references is appended. Most families included in the Coleoptera 2 Section have been updated in the most recent release of the Fauna Europaea index, or are ready to be updated as soon as the FaEu data management environment completes its migration from Zoological Museum Amsterdam to Berlin Museum für Naturkunde.

8.
Nanoscale ; 6(3): 1716-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24343160

RESUMO

Ultra-small molecule-like AuN nanoclusters made by a number of atoms N less than 30 were produced by ion implantation in silica substrates. Their room temperature photoluminescence properties in the visible and near-infrared range have been investigated and correlated with the Er sensitization effects observed in Er-Au co-implanted samples. The intense photoluminescence emission under 488 nm laser excitation occurs in three different spectral regions around 750 nm (band A), 980 nm (band B) and 1150 nm (band C) as a consequence of the formation of discrete energy levels in the electronic structure of the molecule-like AuN nanoclusters. Indeed, energy maxima of bands A and C scale with N(-1/3) as expected for quantum confined systems. Conversely, the energy maximum of band B appears to be almost independent of size, suggesting a contribution of electronic surface states. A clear correlation between the formation of band B in the samples and Er-related photoemission is demonstrated: the band at 980 nm related to AuN nanoclusters resonant with the corresponding Er(3+) absorption level, is suggested as an effective de-excitation channel through which the Au-related photon energy may be transferred from Au nanoclusters to Er ions (either directly or mediated by photon absorption), eventually producing the Er-related infrared emission at 1540 nm.

9.
ACS Nano ; 3(9): 2715-21, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19650659

RESUMO

SiO(2) and TiO(2) dielectric nanoparticles are arranged in linear arrays, supporting collective Bragg modes, and employed as dielectric nanoantennae. Electrodynamic calculations show that strong, tunable, and lossless light extraction is obtained in a wide spectral range, including UV, visible, and near-infrared regions, in opposition to poor enhancement features of isolated dielectric nanoparticles. Emission quantum efficiencies comparable to those obtained employing metallic structures are achieved, with strong emission enhancement even for poor emitter position and dipole moment orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA