Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1348-1361.e22, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636128

RESUMO

Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Células-Tronco Hematopoéticas/patologia , Envelhecimento/patologia , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Medula Óssea/metabolismo , Proliferação de Células , Evolução Clonal , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Privação do Sono/patologia
2.
Nat Immunol ; 23(4): 605-618, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35352063

RESUMO

Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine signaling increased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.


Assuntos
Acetilcolina , Hematopoese , Animais , Linfócitos B , Colinérgicos , Hematopoese/genética , Camundongos , Nicho de Células-Tronco
3.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36827982

RESUMO

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Assuntos
Medula Óssea , Monócitos , Camundongos , Animais , Células da Medula Óssea , Jejum , Quimiocinas/metabolismo
4.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37160117

RESUMO

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Assuntos
Esclerose Múltipla , Animais , Humanos , Camundongos , Sistema Nervoso Central , Interleucina-3 , Microglia , Neuroglia/metabolismo
6.
Nature ; 607(7919): 578-584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636458

RESUMO

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia
7.
Nature ; 595(7869): 701-706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262178

RESUMO

Communication within the glial cell ecosystem is essential for neuronal and brain health1-3. The influence of glial cells on the accumulation and clearance of ß-amyloid (Aß) and neurofibrillary tau in the brains of individuals with Alzheimer's disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) programs microglia to ameliorate the pathology of AD. Upon recognition of Aß deposits, microglia increase their expression of IL-3Rα-the specific receptor for IL-3 (also known as CD123)-making them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional programming of microglia to endow them with an acute immune response program, enhanced motility, and the capacity to cluster and clear aggregates of Aß and tau. These changes restrict AD pathology and cognitive decline. Our findings identify IL-3 as a key mediator of astrocyte-microglia cross-talk and a node for therapeutic intervention in AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/fisiologia , Interleucina-3/metabolismo , Microglia/fisiologia , Animais , Comunicação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/fisiologia
8.
Nature ; 566(7744): 383-387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760925

RESUMO

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Hematopoese/fisiologia , Sono/fisiologia , Animais , Antígenos Ly/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Feminino , Hematopoese/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mielopoese/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Orexina/deficiência , Receptores de Orexina/metabolismo , Orexinas/biossíntese , Orexinas/deficiência , Orexinas/metabolismo , Orexinas/farmacologia , Sono/efeitos dos fármacos , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Privação do Sono/prevenção & controle
9.
Nature ; 566(7742): 115-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700910

RESUMO

The biochemical response to food intake must be precisely regulated. Because ingested sugars and fats can feed into many anabolic and catabolic pathways1, how our bodies handle nutrients depends on strategically positioned metabolic sensors that link the intrinsic nutritional value of a meal with intermediary metabolism. Here we describe a subset of immune cells-integrin ß7+ natural gut intraepithelial T lymphocytes (natural IELs)-that is dispersed throughout the enterocyte layer of the small intestine and that modulates systemic metabolism. Integrin ß7- mice that lack natural IELs are metabolically hyperactive and, when fed a high-fat and high-sugar diet, are resistant to obesity, hypercholesterolaemia, hypertension, diabetes and atherosclerosis. Furthermore, we show that protection from cardiovascular disease in the absence of natural IELs depends on the enteroendocrine-derived incretin GLP-12, which is normally controlled by IELs through expression of the GLP-1 receptor. In this metabolic control system, IELs modulate enteroendocrine activity by acting as gatekeepers that limit the bioavailability of GLP-1. Although the function of IELs may prove advantageous when food is scarce, present-day overabundance of diets high in fat and sugar renders this metabolic checkpoint detrimental to health.


Assuntos
Doenças Cardiovasculares/metabolismo , Progressão da Doença , Intestino Delgado/citologia , Linfócitos Intraepiteliais/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Modelos Animais de Doenças , Ingestão de Alimentos , Enterócitos/citologia , Enterócitos/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/prevenção & controle , Camundongos
10.
Circulation ; 142(3): 244-258, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316750

RESUMO

BACKGROUND: Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS: In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS: In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5CreEgfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5CreEgfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5CreEgfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5CreEgfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS: In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.


Assuntos
Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Mielopoese , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Células Mieloides/metabolismo , Mielopoese/genética , Transdução de Sinais , Transcriptoma
11.
Genes Immun ; 24(6): 289-291, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38066341
12.
Circ Res ; 119(1): 131-41, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27340272

RESUMO

Many aspects of human health and disease display daily rhythmicity. The brain's suprachiasmic nucleus, which interprets recurring external stimuli, and autonomous molecular networks in peripheral cells together, set our biological circadian clock. Disrupted or misaligned circadian rhythms promote multiple pathologies including chronic inflammatory and metabolic diseases such as atherosclerosis. Here, we discuss studies suggesting that circadian fluctuations in the vessel wall and in the circulation contribute to atherogenesis. Data from humans and mice indicate that an impaired molecular clock, disturbed sleep, and shifting light-dark patterns influence leukocyte and lipid supply in the circulation and alter cellular behavior in atherosclerotic lesions. We propose that a better understanding of both local and systemic circadian rhythms in atherosclerosis will enhance clinical management, treatment, and public health policy.


Assuntos
Aterosclerose/metabolismo , Ritmo Circadiano , Animais , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Estilo de Vida Saudável , Humanos , Metabolismo dos Lipídeos , Sono
13.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848965

RESUMO

Cardiovascular disease (CVD) is the number one cause of global mortality and atherosclerosis is the underlying cause of most CVD. However, the molecular mechanisms by which cardiovascular risk factors promote the development of atherosclerosis are not well understood. The development of new efficient therapies to directly block or slow disease progression will require a better understanding of these mechanisms. Accumulating evidence supports a role for endoplasmic reticulum (ER) stress in all stages of the developing atherosclerotic lesion however, it was not clear how ER stress may contribute to disease progression. Recent findings have shown that ER stress signaling through glycogen synthase kinase (GSK)-3α may significantly contribute to macrophage lipid accumulation, inflammatory cytokine production and M1macrophage polarization. In this review we summarize our knowledge of the potential role of ER stress-GSK3 signaling in the development and progression of atherosclerosis as well as the possible therapeutic implications of this pathway.


Assuntos
Aterosclerose/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Animais , Humanos , Fatores de Risco , Transdução de Sinais/fisiologia
14.
Am J Physiol Endocrinol Metab ; 312(1): E48-E57, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879249

RESUMO

Glucosamine is an essential substrate for N-linked protein glycosylation. However, elevated levels of glucosamine can induce endoplasmic reticulum (ER) stress. Glucosamine-induced ER stress has been implicated in the development of diabetic complications, including atherosclerosis and hepatic steatosis. In this study, we investigate the potential relationship between the effects of glucosamine on lipid-linked oligosaccharide (LLO) biosynthesis, N-linked glycosylation, and ER homeostasis. Mouse embryonic fibroblasts (MEFs) were cultured in the presence of 0-5 mM glucosamine for up to 18 h, and LLO biosynthesis was monitored by fluorescence-assisted carbohydrate electrophoresis. ER stress was determined by quantification of unfolded protein response (UPR) gene expression. We found that exposure of MEFs to ≥1 mM glucosamine significantly impaired the biosynthesis of mature (Glc3Man9GlcNAc2) LLOs before the activation of the UPR, which resulted in the accumulation of an LLO intermediate (Man3GlcNAc2). The addition of 4-phenylbutyric acid (4-PBA), a chemical chaperone, was able to alleviate ER stress but did not rescue LLO biosynthesis. Other ER stress-inducing agents, including dithiothreitol and thapsigargin, had no effect on LLO levels. Together, these data suggest that elevated concentrations of glucosamine induce ER stress by interfering with lipid-linked oligosaccharide biosynthesis and N-linked glycosylation. We hypothesize that this pathway represents a causative link between hyperglycemia and the development of diabetic complications.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Glucosamina/farmacologia , Glicosilação/efeitos dos fármacos , Lipopolissacarídeos/biossíntese , Animais , Linhagem Celular , Ditiotreitol/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Camundongos , Fenilbutiratos/farmacologia , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
15.
Arterioscler Thromb Vasc Biol ; 35(5): 1113-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767272

RESUMO

OBJECTIVE: Glycogen synthase kinase (GSK)-3α/ß has been implicated in the pathogenesis of diabetes mellitus, cancer, Alzheimer, and atherosclerosis. The tissue- and homolog-specific functions of GSK3α and ß in atherosclerosis are unknown. This study examines the effect of hepatocyte or myeloid cell deletion of GSK3α or GSK3ß on atherosclerosis in low-density lipoprotein receptor (LDLR)(-/-) mice. APPROACH AND RESULTS: We ablated GSK3α or GSK3ß expression in hepatic or myeloid cells of LDLR(-/-) mice, and mice were fed a high-fat diet for 10 weeks. GSK3α or GSK3ß deficiency in hepatic or myeloid cells did not affect metabolic parameters, including plasma lipid levels. Hepatic deletion of GSK3α or GSK3ß did not affect the development of atherosclerosis or hepatic lipid content. Myeloid deletion of GSK3α, but not of GSK3ß, reduced atherosclerotic lesion volume and lesion complexity. Mice lacking GSK3α in myeloid cells had a less inflammatory and more anti-inflammatory plasma cytokine profile. Macrophages within atherosclerotic lesions of myeloid GSK3α-deficient mice, but not of GSK3ß-deficient mice, displayed reduced expression of markers associated with M1 macrophage polarization and enhanced expression of the M2 markers. Finally, bone marrow-derived macrophages were isolated and differentiated into classical M1 macrophages or alternative M2 macrophages in vitro. GSK3α deletion, but not GSK3ß deletion, attenuated the expression of genes associated with M1 polarization while promoting the expression of genes associated with M2 polarization by modulating STAT3 and STAT6 activation. CONCLUSIONS: Our findings suggest that deletion of myeloid GSK3α attenuates the progression of atherosclerosis by promoting an M2 macrophage phenotype.


Assuntos
Aterosclerose/genética , Deleção de Genes , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Macrófagos/citologia , Animais , Aterosclerose/fisiopatologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Fenótipo
16.
Am J Pathol ; 184(12): 3394-404, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451156

RESUMO

Studies have implicated signaling through glycogen synthase kinase (GSK) 3α/ß in the activation of pro-atherogenic pathways and the accelerated development of atherosclerosis. By using a mouse model, we examined the role of GSK3α in the development and progression of accelerated atherosclerosis. We crossed Gsk3a/GSK3α-knockout mice with low-density lipoprotein receptor (Ldlr) knockout mice. Five-week-old Ldlr(-/-);Gsk3a(+/+), Ldlr(-/-);Gsk3a(+/-), and Ldlr(-/-);Gsk3a(-/-) mice were fed a chow diet or a high-fat diet for 10 weeks and then sacrificed. GSK3α deficiency had no detectible effect on any measured parameters in chow-fed mice. High-fat-diet fed Ldlr(-/-) mice that were deficient for GSK3α had significantly less hepatic lipid accumulation and smaller atherosclerotic lesions (60% smaller in Ldlr(-/-);Gsk3a(+/-) mice, 80% smaller in Ldlr(-/-);Gsk3a(-/-) mice; P < 0.05), compared with Ldlr(-/-);Gsk3a(+/+) controls. GSK3α deficiency was associated with a significant increase in plasma IL-10 concentration and IL-10 expression in isolated macrophages. A twofold to threefold enhancement in endoplasmic reticulum stress-induced IL-10 expression was observed in Thp-1-derived macrophages that were pretreated with the GSK3α/ß inhibitor CT99021. Together, these results suggest that GSK3α plays a pro-atherogenic role, possibly by mediating the effects of endoplasmic reticulum stress in the activation of pro-atherogenic pathways.


Assuntos
Aterosclerose/metabolismo , Fígado Gorduroso/metabolismo , Quinase 3 da Glicogênio Sintase/deficiência , Quinase 3 da Glicogênio Sintase/genética , Fígado/patologia , Receptores de LDL/genética , Animais , Aterosclerose/genética , Peso Corporal , Dieta Hiperlipídica , Feminino , Genótipo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de LDL/deficiência , Transdução de Sinais
17.
J Lipid Res ; 55(11): 2320-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183803

RESUMO

Evidence suggests a causative role for endoplasmic reticulum (ER) stress in the development of atherosclerosis. This study investigated the potential role of glycogen synthase kinase (GSK)-3α/ß in proatherogenic ER stress signaling. Thp1-derived macrophages were treated with the ER stress-inducing agents, glucosamine, thapsigargin, or palmitate. Using small-molecule inhibitors of specific unfolded protein response (UPR) signaling pathways, we found that protein kinase R-like ER kinase (PERK), but not inositol requiring enzyme 1 or activating transcription factor 6, is required for the activation of GSK3α/ß by ER stress. GSK3α/ß inhibition or siRNA-directed knockdown attenuated ER stress-induced expression of distal components of the PERK pathway. Macrophage foam cells within atherosclerotic plaques and isolated macrophages from ApoE(-/-) mice fed a diet supplemented with the GSK3α/ß inhibitor valproate had reduced levels of C/EBP homologous protein (CHOP). GSK3α/ß inhibition blocked ER stress-induced lipid accumulation and the upregulation of genes associated with lipid metabolism. In primary mouse macrophages, PERK inhibition blocked ER stress-induced lipid accumulation, whereas constitutively active S9A-GSK3ß promoted foam cell formation and CHOP expression, even in cells treated with a PERK inhibitor. These findings suggest that ER stress-PERK-GSK3α/ß signaling promotes proatherogenic macrophage lipid accumulation.


Assuntos
Células Espumosas/citologia , Células Espumosas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , eIF-2 Quinase/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Células Espumosas/efeitos dos fármacos , Células Espumosas/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
Can J Physiol Pharmacol ; 92(4): 285-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24708210

RESUMO

Glucosamine sulfate is a dietary supplement that is marketed as a treatment for osteoarthritis. Recent evidence from animal and cell culture models have suggested that glucosamine treatment can promote the misfolding of proteins and the activation of the unfolded protein response (UPR). We investigated whether glucosamine sulfate supplementation activates the UPR in circulating leukocytes of human subjects. Cultured Thp1 human monocytes were exposed to increasing concentrations of glucosamine (0, 0.25, 1.0, 4.0 mmol · L(-1)) for 18 h. We observed a dose-dependent increase in intracellular glucosamine levels as well as the activation of UPR. To test the effect of glucosamine sulfate supplementation in humans, 14 healthy human subjects took 1500 mg · day(-1) glucosamine sulfate for 14 days. Metabolic parameters and blood samples were collected before and after supplementation. In humans, glucosamine sulfate supplementation did not alter metabolic parameters including lipid levels and glucose tolerance. Further, glucosamine sulfate supplementation did not affect intracellular glucosamine levels or activate the UPR in the leukocytes of human subjects. Our results indicate that in healthy human subjects, the recommended dose of glucosamine sulfate (1500 mg · day(-1)) for 14 days does not significantly alter intracellular glucosamine levels and does not activate the UPR in circulating leukocytes.


Assuntos
Suplementos Nutricionais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucosamina/efeitos adversos , Leucócitos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Administração Oral , Adulto , Linhagem Celular , Feminino , Glucosamina/metabolismo , Glucose/metabolismo , Humanos , Leucócitos/metabolismo , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Arterioscler Thromb Vasc Biol ; 32(1): 82-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21998135

RESUMO

OBJECTIVE: The goal of this study was to examine the role of endoplasmic reticulum (ER) stress signaling and the contribution of glycogen synthase kinase (GSK)-3ß activation in hyperglycemic, hyperhomocysteinemic, and high-fat-fed apolipoprotein E-deficient (apoE(-/-)) mouse models of accelerated atherosclerosis. METHODS AND RESULTS: Female apoE(-/-) mice received multiple low-dose injections of streptozotocin (40 µg/kg) to induce hyperglycemia, methionine-supplemented drinking water (0.5% wt/vol) to induce hyperhomocysteinemia, or a high-fat (21% milk fat+0.2% cholesterol) diet to induce relative dyslipidemia. A subset of mice from each group was supplemented with sodium valproate (625 mg/kg), a compound with GSK3 inhibitory activity. At 15 and 24 weeks of age, markers of ER stress, lipid accumulation, GSK3ß phosphorylation, and GSK3ß activity were analyzed in liver and aorta. Atherosclerotic lesions were examined and quantified. Hyperglycemia, hyperhomocysteinemia, and high-fat diet significantly enhanced GSK3ß activity and also increased hepatic steatosis and atherosclerotic lesion volume compared with controls. Valproate supplementation blocked GSK3ß activation and attenuated the development of atherosclerosis and the accumulation of hepatic lipids in each of the models examined. The mechanism by which GSK3ß activity is regulated in these models likely involves alterations in phosphorylation at serine 9 and tyrosine 216. CONCLUSIONS: These findings support the existence of a common mechanism of accelerated atherosclerosis involving ER stress signaling through activation of GSK3ß. Furthermore, our results suggest that atherosclerosis can be attenuated by modulating GSK3ß phosphorylation.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/metabolismo , Estresse do Retículo Endoplasmático , Quinase 3 da Glicogênio Sintase/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais , Ácido Valproico/farmacologia
20.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014350

RESUMO

Scientific evidence underscores the influence of biological sex on the interplay between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress jointly contribute to metabolic dysregulation in both males and females. To address this gap, our study aimed to investigate the combined effects of a high-fat diet (HFD) and repeated footshock stress on fear-related behaviors and metabolic outcomes in male and female mice. Using a robust rodent model that recapitulates key aspects of post-traumatic stress disorder (PTSD), we subjected mice to footshock stressor followed by weekly reminder footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. Our findings revealed that HFD impaired fear memory extinction in male mice that received initial stressor but not in female mice. Blood glucose levels were influenced by both diet and sex, with HFD-fed female mice displaying elevated levels that returned to baseline in the absence of stress, a pattern not observed in male mice. Male mice on HFD exhibited higher energy expenditure, while HFD-fed female mice showed a decreased respiratory exchange ratio (RER). Sex-specific alterations in pro-inflammatory markers and abundance of hematopoietic stem cells were observed in chronically stressed mice on an HFD in different peripheral tissues, indicating the manifestation of distinct comorbid disorders. Single-nuclei RNA sequencing of the ventromedial hypothalamus from stressed mice on an HFD provided insights into sex-specific glial cell activation and cell-type-specific transcriptomic changes. In conclusion, our study offers a comprehensive understanding of the intricate interactions between stress, diet, sex, and various physiological and behavioral outcomes, shedding light on a potential brain region coordinating these interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA