Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabet Med ; 41(4): e15264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073128

RESUMO

AIMS: First-generation closed-loop automated insulin delivery improves glycaemia and psychosocial outcomes among older adults with type 1 diabetes in clinical trials. However, no study has previously assessed real-world lived experience of older adults using closed-loop therapy outside a trial environment. METHODS: Semi-structured interviews were conducted with older adults who were pre-existing insulin pump users and previously completed the OldeR Adult Closed-Loop (ORACL) randomised trial. Interviews focused on perceptions of diabetes technology use, and factors influencing decisions regarding continuation. RESULTS: Twenty-eight participants, mean age 70 years (SD 5), were interviewed at median 650 days (IQR 608-694) after their final ORACL trial visit. At interview, 23 participants (82%) were still using a commercial closed-loop system (requiring manual input for prandial insulin bolus doses). Themes discussed in interviews relating to closed-loop system use included sustained psychosocial benefits, cost and retirement considerations and usability frustrations relating to sensor accuracy and system alarms. Of the five participants who had discontinued, reasons included cost, continuous glucose monitoring-associated difficulties and usability frustrations. Cost was the largest consideration regarding continued use; most participants considered the increased ease of diabetes management to be worth the associated costs, though cost was prohibitive for some. CONCLUSIONS: Almost 2 years after completing a closed-loop clinical trial, closed-loop automated insulin delivery remains the preferred type 1 diabetes therapy for the majority of older adult participants. Chronological age is not a barrier to real-world successful use of diabetes technology. Identifying age-related barriers, and solutions, to diabetes technology use among older adults is warranted.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Idoso , Insulina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/psicologia , Hipoglicemiantes/uso terapêutico , Automonitorização da Glicemia , Glicemia , Resultado do Tratamento , Sistemas de Infusão de Insulina , Estudos Cross-Over
2.
Diabet Med ; 41(3): e15195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37562414

RESUMO

AIMS: To examine the psychometric properties of the Diabetes Management Experiences Questionnaire (DME-Q). Adapted from the validated Glucose Monitoring Experiences Questionnaire, the DME-Q captures satisfaction with diabetes management irrespective of treatment modalities. METHODS: The DME-Q was completed by adults with type 1 diabetes as part of a randomized controlled trial comparing hybrid closed loop (HCL) to standard therapy. Most psychometric properties were examined with pre-randomization data (n = 149); responsiveness was examined using baseline and 26-week follow-up data (n = 120). RESULTS: Pre-randomization, participants' mean age was 44 ± 12 years, 52% were women. HbA1c was 61 ± 11 mmol/mol (7.8 ± 1.0%), diabetes duration was 24 ± 12 years and 47% used an insulin pump prior to the trial. A forced three-factor analysis revealed three expected domains, that is, 'Convenience', 'Effectiveness' and 'Intrusiveness', and a forced one-factor solution was also satisfactory. Internal consistency reliability was strong for the three subscales ( α range = 0.74-0.84) and 'Total satisfaction' ( α = 0.85). Convergent validity was demonstrated with moderate correlations between DME-Q 'Total satisfaction' and diabetes distress (PAID: rs = -0.57) and treatment satisfaction (DTSQ; rs = 0.58). Divergent validity was demonstrated with a weak correlation with prospective/retrospective memory (PRMQ: rs = -0.16 and - 0.13 respectively). Responsiveness was demonstrated, as participants randomized to HCL had higher 'Effectiveness' and 'Total satisfaction' scores than those randomized to standard therapy. CONCLUSIONS: The 22-item DME-Q is a brief, acceptable, reliable measure with satisfactory structural and construct validity, which is responsive to intervention. The DME-Q is likely to be useful for evaluation of new pharmaceutical agents and technologies in research and clinical settings.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Automonitorização da Glicemia , Satisfação do Paciente , Psicometria , Reprodutibilidade dos Testes , Estudos Retrospectivos , Estudos Prospectivos , Glicemia , Inquéritos e Questionários
3.
Intern Med J ; 54(1): 121-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37255209

RESUMO

BACKGROUND AND AIMS: Automated insulin delivery (AID) improves glycaemia among people with type 1 diabetes in clinical trials and overseas real-world studies. Whether improvements are sustained beyond 12 months in the real world, and whether they occur in the Australian context, has not yet been established. We aimed to observe, up to 2 years, the effectiveness of initiating first-generation AID for type 1 diabetes management. METHODS: Retrospective, real-world, observational study using medical records, conducted across five sites in Australia. Adults with type 1 diabetes, who had AID initiated between February 2019 and December 2021, were observed for 6-24 months after initiation (until June 2022). Outcomes examined included glucose metrics assessed by glycated haemoglobin (HbA1c ) and continuous glucose monitoring (CGM), safety and therapy continuation. RESULTS: Ninety-four adults were studied (median age 39 years (interquartile range, IQR: 31-51); pre-initiation HbA1c 7.8% (7.2-8.6)). After AID initiation, HbA1c decreased by mean 0.5 percentage points (95% confidence interval (CI): -0.7 to -0.2) at 3 months (P < 0.001); CGM time in range 3.9-10.0 mmol/L increased by 11 percentage points (9-14) at 1 month (P < 0.001); these improvements were maintained up to 24 months (all P < 0.02). Median CGM time below 3.9 mmol/L was <1.5% pre- and post-AID initiation. The subgroup with pre-initiation HbA1c above 8.5% had the greatest HbA1c improvement (-1.4 percentage points (-1.8 to -1.1) at 3 months). Twelve individuals (13%) discontinued AID, predominantly citing difficulties with CGM. During the 150 person-years observed, four diabetes-related emergencies were documented: three severe hypoglycaemic events and one hyperglycaemic event without ketoacidosis. CONCLUSIONS: Early glucose improvements were observed after real-world AID initiation, sustained up to 2 years, without excess adverse events. The greatest benefits were observed among individuals with highest glycaemia before initiation. Future-generation systems with increased user-friendliness may enhance therapy continuation.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Insulina , Glicemia , Automonitorização da Glicemia , Estudos Retrospectivos , Austrália/epidemiologia , Hipoglicemiantes , Sistemas de Infusão de Insulina
4.
Diabet Med ; 40(4): e15020, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36468784

RESUMO

AIM: To explore the lived experience of older adults with type 1 diabetes using closed-loop automated insulin delivery, an area previously receiving minimal attention. METHODS: Semi-structured interviews were conducted with adults aged 60 years or older with long-duration type 1 diabetes who participated in a randomised, open-label, two-stage crossover trial comparing first-generation closed-loop therapy (MiniMed 670G) versus sensor-augmented pump therapy. Interview recordings were transcribed, thematically analysed and assessed. RESULTS: Twenty-one older adults participated in interviews after using closed-loop therapy. Twenty were functionally independent, without frailty or major cognitive impairment; one was dependent on caregiver assistance, including for diabetes management. Quality of life benefits were identified, including improved sleep and reduced diabetes-related psychological burden, in the context of experiencing improved glucose levels. Gaps between expectations and reality of closed-loop therapy were also experienced, encountering disappointment amongst some participants. The cost was perceived as a barrier to continued closed-loop access post-trial. Usability issues were identified, such as disruptive overnight alarms and sensor inaccuracy. CONCLUSIONS: The lived experience of older adults without frailty or major cognitive impairment using first-generation closed-loop therapy was mainly positive and concordant with glycaemic benefits found in the trial. Older adults' lived experience using automated insulin delivery beyond trial environments requires exploration; moreover, the usability needs of older adults should be considered during future device development.


Assuntos
Diabetes Mellitus Tipo 1 , Fragilidade , Humanos , Idoso , Insulina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Qualidade de Vida , Resultado do Tratamento , Sistemas de Infusão de Insulina , Automonitorização da Glicemia , Estudos Cross-Over , Glicemia
5.
J Sleep Res ; : e14106, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050705

RESUMO

Hypoglycaemia during sleep is a common and clinically important issue for people living with insulin-treated diabetes. Continuous glucose monitoring devices can help to identify nocturnal hypoglycaemia and inform treatment strategies. However, sleep is generally inferred, with diabetes researchers and physicians using a fixed-overnight period as a proxy for sleep-wake status when analysing and interpretating continuous glucose monitoring data. No study to date has validated such an approach with established sleep measures. Continuous glucose monitoring and research-grade actigraphy devices were worn and sleep diaries completed for 2 weeks by 28 older adults (mean age 67 years [SD 5]; 17 (59%) women) with type 1 diabetes. Using continuous glucose monitoring data from a total of 356 nights, fixed-overnight (using the recommended period of 00:00 hours-06:00 hours) and objectively-measured sleep periods were compared. The fixed-overnight period approach missed a median 57 min per night (interquartile range: 49-64) of sleep for each participant, including five continuous glucose monitoring-detected hypoglycaemia episodes during objectively-measured sleep. Twenty-seven participants (96%) had at least 1 night with continuous glucose monitoring time-in-range and time-above-range discrepancies both ≥ 10 percentage points, a clinically significant discrepancy. The utility of fixed-overnight time continuous glucose monitoring as a proxy for sleep-awake continuous glucose monitoring is inadequate as it consistently excludes actual sleep time, obscures glycaemic patterns, and misses sensor hypoglycaemia episodes during sleep. The use of validated measures of sleep to aid interpretation of continuous glucose monitoring data is encouraged.

6.
Diabet Med ; 39(9): e14907, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35757899

RESUMO

AIM: Hybrid closed-loop (HCL) therapy improves glycaemic control in adolescents with type 1 diabetes; however, little is known about their lived experience using these systems. The aim of this study was to explore the lived experiences of youth with type 1 diabetes using HCL therapy, and their parents, to provide insight into their lived experiences. METHODS: Adolescents and young adults aged 12-25 years, who used Medtronic MiniMed™ 670G HCL system during a 6-month randomised clinical trial, and their parents, were invited to participate in a semi-structured interview at the end of the study. Open-ended questions were used to explore the lived experiences of families using HCL. The interviews were audio-recorded, transcribed and analysed using thematic analysis to determine the main themes. RESULTS: In all, 17 young people with type 1 diabetes mean ± SD age: 17.5 ± 4.2 years, diabetes duration: 11.0 ± 4.9 years and HbA1c 64 ± 9 mmol/mol (8.0 ± 0.8%) and 10 parents were interviewed. Three themes were identified: (1) 'Developing confidence and trust in the system', (2) 'Reduction in anxiety' and (3) 'Issues with device'. They reported a positive experience using HCL, with improvements in glucose levels and increased independence with diabetes management. However, frustration around the number of alarms and notifications associated with the system were also identified as issues. CONCLUSION: Both youth and parents acknowledged the benefits of this first-generation HCL system in improving glycaemic outcomes and in providing flexibility and independence. These lived experiences provide valuable information in the introduction and provision of targeted education with HCL therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Glicemia/análise , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Adulto Jovem
9.
Diabetologia ; 59(8): 1636-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27168135

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to investigate the effects of exercise, vs rest, on circulating insulin and glucose, following pre-exercise insulin pump basal rate reduction. METHODS: This was an open-label, two-stage randomised crossover study of 14 adults (seven women, seven men) with type 1 diabetes established on insulin pump therapy. In each stage, participants fasted and insulin delivery was halved following a single insulin basal rate overnight. Exercise (30 min moderate-intensity stationary bicycle exercise, starting 60 min post-basal reduction) and rest stages were undertaken in random order at a university hospital. Randomisation was computer-generated, and allocation concealed via sequentially numbered sealed opaque envelopes. Venous blood was collected at 15 min intervals from 60 min pre- until 210 min post-basal rate reduction. Changes in plasma free insulin (the primary outcome), and changes in plasma glucose, with exercise were compared with changes when resting. Outcomes were assessed blinded to group assignment. RESULTS: Following basal rate reduction when rested, mean (± SE) free insulin decreased by 4.9 ± 2.9%, 16.2 ± 2.6% and 18.6 ± 3.2% at 1, 2 and 3 h, respectively (p < 0.05 after 75 min). With exercise, relative to rest, mean free insulin increased by 6 ± 2 pmol/l after 15 min and 5 ± 2 pmol/l after 30 min (p < 0.001), then declined post-exercise (p < 0.001). Three participants (mean baseline glucose 5.0 ± 0.1 mmol/l) required glucose supplementation to prevent or treat exercise-related hypoglycaemia. In the other 11 participants (mean baseline glucose 8.4 ± 0.5 mmol/l), glucose increased by 0.8 ± 0.3 mmol/l with exercise (p = 0.028). CONCLUSIONS/INTERPRETATION: Halving the basal insulin rate 1 h prior to exercise did not significantly reduce circulating free insulin by exercise commencement. Exercise itself transiently increased insulin levels. In participants with low-normal glucose pre-exercise, hypoglycaemia was not prevented by insulin basal rate reduction alone. Greater insulin basal rate reduction and supplemental carbohydrate may be required to prevent exercise-induced hypoglycaemia. TRIAL REGISTRATION: ANZCTR.org.au ACTRN12613000581763 FUNDING: Australian Diabetes Society, Hugh DT Williamson Foundation, Lynne Quayle Charitable Trust Fund.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/terapia , Exercício Físico/fisiologia , Hipoglicemiantes/uso terapêutico , Sistemas de Infusão de Insulina , Insulina/uso terapêutico , Adulto , Glicemia/efeitos dos fármacos , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Pessoa de Meia-Idade
10.
J Diabetes Sci Technol ; : 19322968241245627, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613225

RESUMO

BACKGROUND: Benefits of hybrid closed-loop (HCL) systems in a high-risk group with type 1 diabetes and impaired awareness of hypoglycemia (IAH) have not been well-explored. METHODS: Adults with Edmonton HYPO scores ≥1047 were randomized to 26-weeks HCL (MiniMed™ 670G) vs standard therapy (multiple daily injections or insulin pump) without continuous glucose monitoring (CGM) (control). Primary outcome was percentage CGM time-in-range (TIR; 70-180 mg/dL) at 23 to 26 weeks post-randomization. Major secondary endpoints included magnitude of change in counter-regulatory hormones and autonomic symptom responses to hypoglycemia at 26-weeks post-randomization. A post hoc analysis evaluated glycemia risk index (GRI) comparing HCL with control groups at 26 weeks post-randomization. RESULTS: Nine participants (median [interquartile range (IQR)] age 51 [41, 59] years; 44% male; enrolment HYPO score 1183 [1058, 1308]; Clarke score 6 [6, 6]; n = 5 [HCL]; n = 4 [control]) completed the study. Time-in-range was higher using HCL vs control (70% [68, 74%] vs 48% [44, 50%], P = .014). Time <70 mg/dL did not differ (HCL 3.8% [2.7, 3.9] vs control 6.5% [4.3, 8.6], P = .14) although hypoglycemia episode duration was shorter (30 vs 50 minutes, P < .001) with HCL. Glycemia risk index was lower with HCL vs control (38.1 [30.0, 39.2] vs 70.8 [58.5, 72.4], P = .014). Following 6 months of HCL use, greater dopamine (24.0 [12.3, 27.6] vs -18.5 [-36.5, -4.8], P = .014), and growth hormone (6.3 [4.6, 16.8] vs 0.5 [-0.8, 3.0], P = .050) responses to hypoglycemia were observed. CONCLUSIONS: Six months of HCL use in high-risk adults with severe IAH increased glucose TIR and improved GRI without increased hypoglycemia, and partially restored counter-regulatory responses. CLINICAL TRIAL REGISTRATION: ACTRN12617000520336.

11.
Diabetes Technol Ther ; 26(5): 335-340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315502

RESUMO

Older adults with type 1 diabetes may face challenges driving safely. Glucose "above-5-to-drive" is often recommended for insulin-treated diabetes to minimize hypoglycemia while driving. However, the effectiveness of this recommendation among older adults has not been evaluated. Older drivers with type 1 diabetes were assessed while using sensor-augmented insulin pumps during a 2-week clinical trial run-in. Twenty-three drivers (median age 69 years [interquartile range; IQR 65-72]; diabetes duration 37 years [20-45]) undertook 618 trips (duration 10 min [5-21]). Most trips (n = 535; 87%) were <30 min duration; 9 trips (1.5%) exceeded 90 min and 3 trips (0.5%) exceeded 120 min. Pre-trip continuous glucose monitoring (CGM) was >5.0 mmol/L for 577 trips (93%) and none of these had CGM <3.9 mmol/L during driving (including 8 trips >90 min and 3 trips >120 min). During 41 trips with pre-trip CGM ≤5.0 mmol/L, 11 trips had CGM <3.9 mmol/L. Seventy-one CGM alerts occurred during 60 trips (10%), of which 54 of 71 alerts (76%) were unrelated to hypoglycemia. Our findings support a glucose "above-5-to-drive" recommendation to avoid CGM-detected hypoglycemia among older drivers, including for prolonged drives, and highlight the importance of active CGM low-glucose alerts to prevent hypoglycemia during driving. Driving-related CGM usability and alert functionality warrant investigation. Clinical trial ACTRN1261900515190.


Assuntos
Condução de Veículo , Automonitorização da Glicemia , Glicemia , Diabetes Mellitus Tipo 1 , Hipoglicemia , Hipoglicemiantes , Sistemas de Infusão de Insulina , Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Idoso , Masculino , Feminino , Glicemia/análise , Hipoglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Insulina/uso terapêutico , Pessoa de Meia-Idade
12.
Diabetes Technol Ther ; 25(7): 497-506, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37010375

RESUMO

This study examined correlations between continuous glucose monitoring (CGM)-based composite metrics and standard glucose metrics within CGM data sets from individuals with recent-onset and long-duration type 1 diabetes. First, a literature review and critique of published CGM-based composite metrics was undertaken. Second, composite metric results were calculated for the two CGM data sets and correlations with six standard glucose metrics were examined. Fourteen composite metrics met selection criteria; these metrics focused on overall glycemia (n = 8), glycemic variability (n = 4), and hypoglycemia (n = 2), respectively. Results for the two diabetes cohorts were similar. All eight metrics focusing on overall glycemia strongly correlated with glucose time in range; none strongly correlated with time below range. The eight overall glycemia-focused and two hypoglycemia-focused composite metrics were all sensitive to automated insulin delivery therapeutic intervention. Until a composite metric can adequately capture both achieved target glycemia and hypoglycemia burden, the current two-dimensional CGM assessment approach may offer greatest clinical utility.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glicemia , Automonitorização da Glicemia/métodos , Benchmarking , Hipoglicemia/diagnóstico
13.
Diabetes Technol Ther ; 25(5): 356-362, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802246

RESUMO

Objective: To explore the impact of missing data on the accuracy of continuous glucose monitoring (CGM) metrics collected for a 2-week period in a clinical trial. Research Design and Methods: Simulations were conducted to examine the effect of various patterns of missingness on the accuracy of CGM metrics as compared with a "complete" data set. The proportion of missing data, the "block size" in which the data were missing, and the missing mechanism were modified for each "scenario." The degree of agreement between simulated and "true" glycemic measures under each scenario was presented as R2. Results: Under all missing patterns, R2 declined as the proportion of missing data increased, however, as the "block size" of missing data increased, the percentage of missing data had a more pronounced effect on the agreement between measures. For a 14-day CGM data set to be considered representative for percentage time in range (%TIR), at least 70% of CGM data should be available over at least 10 days (R2 > 0.9). Skewed outcome measures, such as percentage time below range and coefficient of variation, were more affected by missing data than the less skewed measures (%TIR, percentage time above range, mean glucose). Conclusions: Both the degree and pattern of missing data impact upon the accuracy of recommended CGM-derived glycemic measures. In planning research, an understanding of patterns of missing data in the study population is required to gauge the likely effects of missing data on outcome accuracy. Trial registration number: Australian New Zealand Clinic Trials Registry ACTRN12616000753459.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Humanos , Glucose , Automonitorização da Glicemia , Benchmarking , Austrália
14.
Diabetes Technol Ther ; 24(9): 666-671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35575751

RESUMO

Sleep-related effects of closed-loop therapy among older adults with type 1 diabetes have not been well established. In the OldeR Adult Closed-Loop (ORACL) randomized, crossover trial of first-generation closed-loop therapy (MiniMed 670G), participants wore actigraphy and completed sleep diaries for 14-day periods at stage end. During objectively measured sleep (actigraphy) with closed-loop versus sensor-augmented pump therapy, glucose time-in-range 70-180 mg/dL (3.9-10.0 mmol/L) was greater (90.3% vs. 78.7%, respectively; difference 8.2 percentage points [95% confidence interval {CI} 1.5 to 13.0]; P = 0.008), and there were fewer sensor hypoglycemia episodes (18 vs. 43, respectively; incident rate ratio 0.40 [95% CI 0.20 to 0.55]; P = 0.007). Sleep quality recorded daily was worse with closed-loop therapy (P = 0.006); Pittsburgh Sleep Quality Index did not differ. There were 30% more system alarms during monitored sleep with closed-loop therapy (P < 0.001). First-generation closed-loop therapy has important glycemic benefits during sleep for older adults, with deterioration in some sleep quality measures. Sleep quality warrants prioritization and investigation during advancement of closed-loop technology.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Idoso , Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Insulina Regular Humana/uso terapêutico , Sono , Qualidade do Sono
15.
Diabetes Care ; 45(2): 381-390, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844995

RESUMO

OBJECTIVE: To assess the efficacy and safety of closed-loop insulin delivery compared with sensor-augmented pump therapy among older adults with type 1 diabetes. RESEARCH DESIGN AND METHODS: This open-label, randomized (1:1), crossover trial compared 4 months of closed-loop versus sensor-augmented pump therapy. Eligible adults were aged ≥60 years, with type 1 diabetes (duration ≥10 years), using an insulin pump. The primary outcome was continuous glucose monitoring (CGM) time in range (TIR; 3.9-10.0 mmol/L). RESULTS: There were 30 participants (mean age 67 [SD 5] years), with median type 1 diabetes duration of 38 years (interquartile range [IQR] 20-47), randomized (n = 15 to each sequence); all completed the trial. The mean TIR was 75.2% (SD 6.3) during the closed-loop stage and 69.0% (9.1) during the sensor-augmented pump stage (difference of 6.2 percentage points [95% CI 4.4 to 8.0]; P < 0.0001). All prespecified CGM metrics favored closed loop over the sensor-augmented pump; benefits were greatest overnight. Closed loop reduced CGM time <3.9 mmol/L during 24 h/day by 0.5 percentage points (95% CI 0.3 to 1.1; P = 0.0005) and overnight by 0.8 percentage points (0.4 to 1.1; P < 0.0001) compared with sensor-augmented pump. There was no significant difference in HbA1c between closed-loop versus sensor-augmented pump stages (7.3% [IQR, 7.1-7.5] (56 mmol/mol [54-59]) vs. 7.5% [7.1-7.9] (59 mmol/mol [54-62]), respectively; P = 0.13). Three severe hypoglycemia events occurred during the closed-loop stage and two occurred during the sensor-augmented pump stage; no hypoglycemic events required hospitalization. One episode of diabetic ketoacidosis occurred during the sensor-augmented pump stage; no serious adverse events occurred during the closed-loop stage. CONCLUSIONS: Closed-loop therapy is an effective treatment option for older adults with long-duration type 1 diabetes, and no safety issues were identified. These older adults had higher TIR accompanied by less time below range during closed loop than during sensor-augmented pump therapy. Of particular clinical importance, closed loop reduced the time spent in hypoglycemic range overnight.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Idoso , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Sistemas de Infusão de Insulina , Pessoa de Meia-Idade
16.
Lancet Healthy Longev ; 3(12): e839-e848, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410370

RESUMO

BACKGROUND: Older adults with type 1 diabetes are recommended modified glucose targets. However, data on the effects of diabetes technology in older age are scarce. We assessed older adults established on sensor-augmented insulin pump therapy during clinical trial run-in and compared their continuous glucose monitoring (CGM) profiles with consensus recommendations. We aimed to provide insight into the applicability of currently recommended CGM-based targets while accounting for current Diabetes UK guidelines. METHODS: In this analysis, adults aged 60 years or older with type 1 diabetes with a duration of at least 10 years and entering the Older Adult Closed Loop (ORACL) trial were studied. The trial was done at two tertiary hospitals in Australia. Individuals who were independent with diabetes self-management, as well as those receiving caregiver assistance for their diabetes management, were eligible for inclusion. Participants underwent baseline clinical assessment, which included medical history and examination, testing for frailty, functional ability, cognitive functioning, psychosocial wellbeing, and subjective sleep quality; fasting venous blood samples were collected for C-peptide, glucose, and glycated haemoglobin A1c measurement. Sensor-augmented pumps, carbohydrate-counting education, and diabetes education were provided to participants by diabetes nurse educators, dietitians, and endocrinologists experienced in type 1 diabetes clinical care. CGM data were subsequently collected for 2 weeks during sensor-augmented pump therapy. The ORACL trial is registered with the Australian New Zealand Clinical Trial Registry, ACTRN12619000515190. FINDINGS: Our analysis included all 30 participants who completed the ORACL trial run-in-19 (63%) women and 11 (37%) men (mean age 67 years [SD 5], median diabetes duration 38 years [IQR 20-47], and insulin total daily dose 0·55 units [0·41-0·66] per kg bodyweight). Ten (33%) of 30 participants had impaired hypoglycaemia awareness and six (20%) were pre-frail; none were frail. The median CGM time in range 3·9-10·0 mmol/L was 71% (IQR 64-79). The time spent with glucose above 10·0 mmol/L was 27% (18-35) and above 13·9 mmol/L was 3·9% (2·4-10·2). The time with glucose below 3·9 mmol/L was 2·0% (1·2-3·1) and the time below 3·0 mmol/L was 0·2% (0·1-0·4). Only two (7%) of 30 participants met all CGM-based consensus recommendations modified for older adults. Time in hypoglycaemia was lower among the 16 participants with predictive low-glucose alerts enabled than among the 14 participants not using predictive low-glucose alerts (median difference -1·1 percentage points [95% CI -2·0 to -0·1]; p=0·038). This difference was even greater overnight (-2·3 percentage points [-3·2 to -1·0]; p=0·0018). One serious adverse event occurred (elective cardiac stent). INTERPRETATION: Using sensor-augmented pumps after multidisciplinary education, this group of older adults without frailty achieved a time in range far exceeding minimum consensus recommendations. However, the current stringent hypoglycaemia recommendations for all older adults were not met. Predictive low alerts could reduce hypoglycaemia, particularly overnight. Investigation into the effectiveness of CGM-based targets that consider frailty, functional status, and diabetes therapies for older adults is warranted. FUNDING: JDRF and Diabetes Australia.


Assuntos
Diabetes Mellitus Tipo 1 , Idoso , Feminino , Humanos , Masculino , Austrália/epidemiologia , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose , Insulina/uso terapêutico , Pessoa de Meia-Idade
17.
Diabetes Care ; 45(1): 194-203, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789504

RESUMO

OBJECTIVE: To compare glucose control with hybrid closed-loop (HCL) when challenged by high intensity exercise (HIE), moderate intensity exercise (MIE), and resistance exercise (RE) while profiling counterregulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. RESEARCH DESIGN AND METHODS: This study was an open-label multisite randomized crossover trial. Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic MiniMed 670G) with a temporary target set 2 h prior to and during exercise and 15 g carbohydrates if pre-exercise glucose was <126 mg/dL to prevent hypoglycemia. Primary outcome was median (interquartile range) continuous glucose monitoring time-in-range (TIR; 70-180 mg/dL) for 14 h post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counterregulatory hormones were measured for 280 min post-exercise commencement. RESULTS: Median TIR was 81% (67, 93%), 91% (80, 94%), and 80% (73, 89%) for 0-14 h post-exercise commencement for HIE, MIE, and RE, respectively (n = 30), with no difference between exercise types (MIE vs. HIE; P = 0.11, MIE vs. RE, P = 0.11; and HIE vs. RE, P = 0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases, respectively, in noradrenaline (P = 0.01 and P = 0.004), cortisol (P < 0.001 and P = 0.001), lactate (P ≤ 0.001 and P ≤ 0.001), and heart rate (P = 0.007 and P = 0.015). During HIE compared with MIE, there were greater increases in growth hormone (P = 0.024). CONCLUSIONS: Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counterregulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery.


Assuntos
Diabetes Mellitus Tipo 1 , Treinamento Resistido , Adulto , Glicemia , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina
18.
Diabetes Technol Ther ; 24(12): 873-880, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094458

RESUMO

Aim: To compare evening and overnight hypoglycemia risk after late afternoon exercise with a nonexercise control day in adults with type 1 diabetes using automated insulin delivery (AID). Methods: Thirty adults with type 1 diabetes using AID (Minimed 670G) performed in random order 40 min high intensity interval aerobic exercise (HIE), resistance (RE), and moderate intensity aerobic exercise (MIE) exercise each separated by >1 week. The closed-loop set-point was temporarily increased 2 h pre-exercise and a snack eaten if plasma glucose was ≤126 mg/dL pre-exercise. Exercise commenced at ∼16:00. A standardized meal was eaten at ∼20:40. Hypoglycemic events were defined as a continuous glucose monitor (CGM) reading <70 mg/dL for ≥15 min. Four-hour postevening meal and overnight (00:00-06:00) CGM metrics for exercise were compared with the prior nonexercise day. Results: There was no severe hypoglycemia. Between 00:00 and 06:00, the proportion of nights with hypoglycemia did not differ postexercise versus control for HIE (18% vs. 11%; P = 0.688), RE (4% vs. 14%; P = 0.375), and MIE (7% vs. 14%; P = 0.625). Time in range (TIR) (70-180 mg/dL), >75% for all nights, did not differ between exercise conditions and control. Hypoglycemia episodes postmeal after exercise versus control did not differ for HIE (22% vs. 7%; P = 0.219) and MIE (10% vs. 14%; P > 0.999), but were greater post-RE (39% vs. 10%; P = 0.012). Conclusions: Overnight TIR was excellent with AID without increased hypoglycemia postexercise between 00:00 and 06:00 compared with nonexercise days. In contrast, hypoglycemia risk was increased after the first meal post-RE, suggesting the importance of greater vigilance and specific guidelines for meal-time dosing, particularly with vigorous RE. ACTRN12618000905268.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Hipoglicemia/prevenção & controle , Glicemia , Hipoglicemiantes/uso terapêutico , Exercício Físico , Insulina Regular Humana/uso terapêutico , Sistemas de Infusão de Insulina , Estudos Cross-Over
19.
Diabetes Technol Ther ; 24(5): 350-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156852

RESUMO

There is limited evidence supporting the recommendation that drivers with insulin-treated diabetes need to start journeys with glucose >90 mg/dL. Glucose levels of drivers with type 1 diabetes were monitored for 3 weeks using masked continuous glucose monitoring (CGM). Eighteen drivers (median [IQR] age 40 [35, 51] years; 11 men) undertook 475 trips (duration 15 [13, 21] min). Hypoglycemia did not occur in any trip starting with glucose >90 mg/dL (92%; n = 436). Thirteen drivers recorded at least one trip (total n = 39) starting with glucose <90 mg/dL. Among these, driving glucose was <70 mg/dL in five drivers (38%) during 10 trips (26%). Among five drivers (28%), a ≥ 36 mg/dL drop was observed within 20 min of starting their journey. Journey duration was positively associated with maximum glucose change. These findings support current guidelines to start driving with glucose >90 mg/dL, and to be aware that glucose levels may change significantly within 20 min. A CGM-based, in-vehicle display could provide glucose information and alerts that are compatible with safe driving. Clinical Trial Registration number: ACTRN12617000520336.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adulto , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino
20.
JAMA Pediatr ; 175(12): 1227-1235, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633418

RESUMO

Importance: Hybrid closed-loop (HCL) therapy has improved glycemic control in children and adolescents with type 1 diabetes; however, the efficacy of HCL on glycemic and psychosocial outcomes has not yet been established in a long-term randomized clinical trial. Objective: To determine the percentage of time spent in the target glucose range using HCL vs current conventional therapies of continuous subcutaneous insulin infusion or multiple daily insulin injections with or without continuous glucose monitoring (CGM). Design, Setting, and Participants: This 6-month, multicenter, randomized clinical trial included 172 children and adolescents with type 1 diabetes; patients were recruited between April 18, 2017, and October 4, 2019, in Australia. Data were analyzed from July 25, 2020, to February 26, 2021. Interventions: Eligible participants were randomly assigned to either the control group for conventional therapy (continuous subcutaneous insulin infusion or multiple daily insulin injections with or without CGM) or the intervention group for HCL therapy. Main Outcomes and Measures: The primary outcome was the percentage of time in range (TIR) within a glucose range of 70 to 180 mg/dL, measured by 3-week masked CGM collected at the end of the study in both groups. Secondary outcomes included CGM metrics for hypoglycemia, hyperglycemia, and glycemic variability and psychosocial measures collected by validated questionnaires. Results: A total of 135 patients (mean [SD] age, 15.3 [3.1] years; 76 girls [56%]) were included, with 68 randomized to the control group and 67 to the HCL group. Patients had a mean (SD) diabetes duration of 7.7 (4.3) years and mean hemoglobin A1c of 64 (11) mmol/mol, with 110 participants (81%) receiving continuous subcutaneous insulin infusion and 72 (53%) receiving CGM. In the intention-to-treat analyses, TIR increased from a mean (SD) of 53.1% (13.0%) at baseline to 62.5% (12.0%) at the end of the study in the HCL group and from 54.6% (12.5%) to 56.1% (12.2%) in the control group, with a mean adjusted difference between the 2 groups of 6.7% (95% CI, 2.7%-10.8%; P = .002). Hybrid closed-loop therapy also reduced the time that patients spent in a hypoglycemic (<70 mg/dL) range (difference, -1.9%; 95% CI, -2.5% to -1.3%) and improved glycemic variability (coefficient of variation difference, -5.7%; 95% CI, -10.2% to -0.9%). Hybrid closed-loop therapy was associated with improved diabetes-specific quality of life (difference, 4.4 points; 95% CI, 0.4-8.4 points), with no change in diabetes distress. There were no episodes of severe hypoglycemia or diabetic ketoacidosis in either group. Conclusions and Relevance: In this randomized clinical trial, 6 months of HCL therapy significantly improved glycemic control and quality of life compared with conventional therapy in children and adolescents with type 1 diabetes. Trial Registration: ANZCTR identifier: ACTRN12616000753459.


Assuntos
Diabetes Mellitus Tipo 1/psicologia , Controle Glicêmico/métodos , Funcionamento Psicossocial , Adolescente , Criança , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA