RESUMO
Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.
Assuntos
Transtornos Mentais , Transtornos do Sono-Vigília , Adulto Jovem , Adolescente , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Saúde Mental , Transtornos do HumorRESUMO
Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.
Assuntos
Esquizofrenia , Ritmo Ultradiano , Humanos , Córtex Pré-Frontal Dorsolateral , Esquizofrenia/genética , Sono , Encéfalo , Córtex Pré-Frontal/metabolismoRESUMO
High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.
RESUMO
Circadian rhythms are critical for human health and are highly conserved across species. Disruptions in these rhythms contribute to many diseases, including psychiatric disorders. Previous results suggest that circadian genes modulate behavior through specific cell types in the nucleus accumbens (NAc), particularly dopamine D1-expressing medium spiny neurons (MSNs). However, diurnal rhythms in transcript expression have not been investigated in NAc MSNs. In this study we identified and characterized rhythmic transcripts in D1- and D2-expressing neurons and compared rhythmicity results to homogenate as well as astrocyte samples taken from the NAc of male and female mice. We find that all cell types have transcripts with diurnal rhythms and that top rhythmic transcripts are largely core clock genes, which peak at approximately the same time of day in each cell type and sex. While clock-controlled rhythmic transcripts are enriched for protein regulation pathways across cell type, cell signaling and signal transduction related processes are most commonly enriched in MSNs. In contrast to core clock genes, these clock-controlled rhythmic transcripts tend to reach their peak in expression about 2-h later in females than males, suggesting diurnal rhythms in reward may be delayed in females. We also find sex differences in pathway enrichment for rhythmic transcripts peaking at different times of day. Protein folding and immune responses are enriched in transcripts that peak in the dark phase, while metabolic processes are primarily enriched in transcripts that peak in the light phase. Importantly, we also find that several classic markers used to categorize MSNs are rhythmic in the NAc. This is critical since the use of rhythmic markers could lead to over- or under-enrichment of targeted cell types depending on the time at which they are sampled. This study greatly expands our knowledge of how individual cell types contribute to rhythms in the NAc.
Assuntos
Ritmo Circadiano , Núcleo Accumbens , Animais , Núcleo Accumbens/metabolismo , Masculino , Feminino , Camundongos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Caracteres Sexuais , Expressão Gênica/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Camundongos Endogâmicos C57BL , Astrócitos/metabolismo , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets. To understand how the transcriptional profile differs between the BAs, layers, and sublayers of human sgACC, we collected layer strips using laser capture microdissection followed by RNA sequencing. We found no significant differences in transcript expression in these specific cortical layers between BAs within the sgACC. In contrast, we identified striking differences between Layers 3 and 5a or 5b that were concordant across sgACC BAs. We found that sublayers 5a and 5b were transcriptionally similar. Pathway analyses of L3 and L5 revealed overlapping biological processes related to synaptic function. However, L3 was enriched for pathways related to cell-to-cell junction and dendritic spines whereas L5 was enriched for pathways related to brain development and presynaptic function, indicating potential functional differences across layers. Our study provides important insight into normative transcriptional features of the sgACC.
Assuntos
Giro do Cíngulo , Transcriptoma , Humanos , Giro do Cíngulo/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Microdissecção e Captura a LaserRESUMO
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Assuntos
Encefalopatias/complicações , Ritmo Circadiano/fisiologia , Longevidade/fisiologia , Transtornos do Sono do Ritmo Circadiano/complicações , Sono/fisiologia , Animais , Encefalopatias/fisiopatologia , Humanos , Transtornos do Sono do Ritmo Circadiano/fisiopatologiaRESUMO
The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). Each of these structures have some overlapping and some distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in human cortical regions. Here, we identify molecular rhythms across the three striatal subregions collected from postmortem human brain tissue in subjects without psychiatric or neurological disorders. Core circadian clock genes are rhythmic across all three regions and show strong phase concordance across regions. However, the putamen contains a much larger number of significantly rhythmic transcripts than the other two regions. Moreover, there are many differences in pathways that are rhythmic across regions. Strikingly, the top rhythmic transcripts in NAc (but not the other regions) are predominantly small nucleolar RNAs and long noncoding RNAs, suggesting that a completely different mechanism might be used for the regulation of diurnal rhythms in translation and/or RNA processing in the NAc versus the other regions. Further, although the NAc and putamen are generally in phase with regard to timing of expression rhythms, the NAc and caudate, and caudate and putamen, have several clusters of discordant rhythmic transcripts, suggesting a temporal wave of specific cellular processes across the striatum. Taken together, these studies reveal distinct transcriptome rhythms across the human striatum and are an important step in helping to understand the normal function of diurnal rhythms in these regions and how disruption could lead to pathology.
Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Estriado Ventral/metabolismo , Encéfalo/metabolismo , Humanos , Núcleo Accumbens/metabolismo , Putamen/metabolismo , TranscriptomaRESUMO
Circadian rhythmicity in transcriptomic profiles has been shown in many physiological processes, and the disruption of circadian patterns has been found to associate with several diseases. In this paper, we developed a series of likelihood-based methods to detect (i) circadian rhythmicity (denoted as LR_rhythmicity) and (ii) differential circadian patterns comparing two experimental conditions (denoted as LR_diff). In terms of circadian rhythmicity detection, we demonstrated that our proposed LR_rhythmicity could better control the type I error rate compared to existing methods under a wide variety of simulation settings. In terms of differential circadian patterns, we developed methods in detecting differential amplitude, differential phase, differential basal level and differential fit, which also successfully controlled the type I error rate. In addition, we demonstrated that the proposed LR_diff could achieve higher statistical power in detecting differential fit, compared to existing methods. The superior performance of LR_rhythmicity and LR_diff was demonstrated in four real data applications, including a brain aging data (gene expression microarray data of human postmortem brain), a time-restricted feeding data (RNA sequencing data of human skeletal muscles) and a scRNAseq data (single cell RNA sequencing data of mouse suprachiasmatic nucleus). An R package for our methods is publicly available on GitHub https://github.com/diffCircadian/diffCircadian.
Assuntos
Ritmo Circadiano/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Funções Verossimilhança , Software , Transcriptoma , Fatores Etários , Algoritmos , Animais , Biomarcadores , Encéfalo/fisiologia , Humanos , Camundongos , Reprodutibilidade dos TestesRESUMO
Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s's ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways.
Assuntos
Relógios Biológicos/genética , Regulação da Expressão Gênica , Ritmo Ultradiano/genética , Proteína 1 de Ligação a X-Box/fisiologia , Animais , Células Cultivadas , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Fatores de Tempo , Transcrição Gênica , Proteína 1 de Ligação a X-Box/genéticaRESUMO
Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).
Assuntos
Ritmo Circadiano , Projetos de Pesquisa , Humanos , Animais , Camundongos , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Transcriptoma , Tamanho da AmostraRESUMO
Substance use disorder (SUD) is associated with disruptions in circadian rhythms. The circadian transcription factor neuronal PAS domain protein 2 (NPAS2) is enriched in reward-related brain regions and regulates reward, but its role in SU is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration (acquisition, dose-response, progressive ratio, extinction, cue-induced reinstatement) in wild-type (WT) and Npas2 mutant mice at different times of day. In the light (inactive) phase, cocaine self-administration, reinforcement, motivation and extinction responding were increased in all Npas2 mutants. Sex differences emerged during the dark (active) phase with Npas2 mutation increasing self-administration, extinction responding, and reinstatement only in females as well as reinforcement and motivation in males and females. To determine whether circulating hormones are driving these sex differences, we ovariectomized WT and Npas2 mutant females and confirmed that unlike sham controls, ovariectomized mutant mice showed no increase in self-administration. To identify whether striatal brain regions are activated in Npas2 mutant females, we measured cocaine-induced ΔFosB expression. Relative to WT, ΔFosB expression was increased in D1+ neurons in the nucleus accumbens (NAc) core and dorsolateral (DLS) striatum in Npas2 mutant females after dark phase self-administration. We also identified potential target genes that may underlie the behavioral responses to cocaine in Npas2 mutant females. These results suggest NPAS2 regulates reward and activity in specific striatal regions in a sex and time of day (TOD)-specific manner. Striatal activation could be augmented by circulating sex hormones, leading to an increased effect of Npas2 mutation in females.SIGNIFICANCE STATEMENT Circadian disruptions are a common symptom of substance use disorders (SUDs) and chronic exposure to drugs of abuse alters circadian rhythms, which may contribute to subsequent SU. Diurnal rhythms are commonly found in behavioral responses to drugs of abuse with drug sensitivity and motivation peaking during the dark (active) phase in nocturnal rodents. Emerging evidence links disrupted circadian genes to SU vulnerability and drug-induced alterations to these genes may augment drug-seeking. The circadian transcription factor neuronal PAS domain protein 2 (NPAS2) is enriched in reward-related brain regions and regulates reward, but its role in SU is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration in wild-type (WT) and Npas2 mutant mice at different times of day.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/fisiologia , Cocaína/administração & dosagem , Mutação/genética , Proteínas do Tecido Nervoso/genética , Caracteres Sexuais , Administração Intravenosa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , AutoadministraçãoRESUMO
Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.
Assuntos
Cocaína , Núcleo Accumbens , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Ritmo Circadiano/fisiologia , Cocaína/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Recompensa , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.
Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Animais , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mania , Camundongos , Ácido Valproico/farmacologiaRESUMO
AIM: Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD: Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS: Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS: Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Assuntos
Transtorno Bipolar , Transtornos Cronobiológicos , Animais , Pesquisa Comportamental , Transtorno Bipolar/diagnóstico , Transtornos Cronobiológicos/genética , Ritmo Circadiano/genética , Humanos , Sono/fisiologiaRESUMO
Altered behavioral rhythms are a fundamental diagnostic feature of mood disorders. Patients report worse subjective sleep and objective measures confirm this, implicating a role for circadian rhythm disruptions in mood disorder pathophysiology. Molecular clock gene mutations are associated with increased risk of mood disorder diagnosis and/or severity of symptoms, and mouse models of clock gene mutations have abnormal mood-related behaviors. The mechanism by which circadian rhythms contribute to mood disorders remains unknown, however, circadian rhythms regulate and are regulated by various biological systems that are abnormal in mood disorders and this interaction is theorized to be a key component of mood disorder pathophysiology. A growing body of evidence has begun defining how the interaction of circadian and neurotransmitter systems influences mood and behavior, including the role of current antidepressants and mood stabilizers. Additionally, the hypothalamus-pituitary-adrenal (HPA) axis interacts with both circadian and monoaminergic systems and may facilitate the contribution of environmental stressors to mood disorder pathophysiology. The central role of circadian rhythms in mood disorders has led to the development of chronotherapeutics, which are treatments designed specifically to target circadian rhythm regulators, such as sleep, light, and melatonin, to produce an antidepressant response.
Assuntos
Ritmo Circadiano , Melatonina , Animais , Humanos , Melatonina/uso terapêutico , Camundongos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/genética , Sistema Hipófise-Suprarrenal , SonoRESUMO
The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Núcleo Accumbens/citologia , Sinapses , Animais , Feminino , Ácido Glutâmico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Recompensa , Transmissão Sináptica/efeitos dos fármacosRESUMO
Mood disorders, including major depression, bipolar disorder, and seasonal affective disorder, are debilitating disorders that affect a significant portion of the global population. Individuals suffering from mood disorders often show significant disturbances in circadian rhythms and sleep. Moreover, environmental disruptions to circadian rhythms can precipitate or exacerbate mood symptoms in vulnerable individuals. Circadian clocks exist throughout the central nervous system and periphery, where they regulate a wide variety of physiological processes implicated in mood regulation. These processes include monoaminergic and glutamatergic transmission, hypothalamic-pituitary-adrenal axis function, metabolism, and immune function. While there seems to be a clear link between circadian rhythm disruption and mood regulation, the mechanisms that underlie this association remain unclear. This review will touch on the interactions between the circadian system and each of these processes and discuss their potential role in the development of mood disorders. While clinical studies are presented, much of the review will focus on studies in animal models, which are attempting to elucidate the molecular and cellular mechanisms in which circadian genes regulate mood.
Assuntos
Relógios Circadianos , Sistema Hipotálamo-Hipofisário , Animais , Ritmo Circadiano , Humanos , Transtornos do Humor , Sistema Hipófise-SuprarrenalRESUMO
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
Assuntos
Ritmo Circadiano/fisiologia , Sirtuína 1/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Cocaína/metabolismo , Condicionamento Operante/fisiologia , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Oxirredução , Recompensa , Sirtuína 1/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/metabolismoRESUMO
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.
Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lítio/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Química Encefálica , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , ProteômicaRESUMO
With aging, significant changes in circadian rhythms occur, including a shift in phase toward a "morning" chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here, we used a previously described time-of-death analysis to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex [Brodmann's area 11 (BA11) and BA47]. Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in â¼ 10% of detected transcripts (P < 0.05). Using a metaanalysis across the two brain areas, we identified a core set of 235 genes (q < 0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than 1,000 genes (1,186 in BA11; 1,591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time (to our knowledge) significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep, and mood in later life.