Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26421-26430, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843899

RESUMO

Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C2 and C4 carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.

2.
J Phys Chem A ; 121(29): 5475-5486, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678503

RESUMO

Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, the chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO• radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. These findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.

3.
Energy Fuels ; 38(10): 8829-8841, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38774062

RESUMO

While today's biomass-based diesel fuels are used at relatively low blend levels in petroleum diesel, decarbonization of the heavy-duty trucking and off-road sectors is driving increasing use of higher level blends and the combination of hydroprocessing-derived renewable diesel (RD) with biodiesel (fatty acid methyl esters) to create a 100% renewable fuel. However, little data are available on the properties of biodiesel blends over 20 vol % into RD or conventional diesel, despite the potential for properties to fall well outside the normal range for diesel fuels. Here, we evaluate the properties of 20-80% blends of a soy-derived biodiesel into RD and petroleum diesel. Properties measured were flash point, cloud point, cetane number, surface tension, density, kinematic viscosity, distillation curve, lower heating value, water content, water solubility in the fuel, lubricity, and oxidation stability. Density and viscosity were measured over a wide temperature range. A key objective was to reveal properties that might limit blending of biodiesel and any differences between biodiesel blends into RD versus petroleum diesel and to understand research needed to advance the use of high-level blends and 100% renewable fuel. Properties that may limit blending include the cloud point, viscosity, distillation curve, and oxidation stability. Meeting cloud point requirements can be an issue for all distillate fuels. For biodiesel, reducing the blend level and use of lower cloud point hydrocarbon blendstocks, such as No. 1 diesel or kerosene, can be used in winter months. Alternatively, a heated fuel system that allows for starting the vehicle on conventional diesel before switching to pure biodiesel (B100) or a high-level blend has been successfully demonstrated in the literature. Some biodiesels can have kinematic viscosity above the upper limit for diesel fuels (4.1 mm2/s), which will limit the amount that can be blended. Biodiesel boils in a narrow range at the very high end of the No. 2 diesel range. Additional research is needed to understand how the high T90 of B100 and high-level blends and the very low distillation range of B100, some RD samples, and high-level biodiesel blends impact lube oil dilution, engine deposits, and diesel oxidation catalyst light-off. Blending with No. 1 diesel or kerosene or biodiesel-specific engine calibrations may mitigate these issues. Oxidation stability of higher level blends is poorly understood but may be addressed through the increased use of antioxidant additives. Finally, high-level biodiesel blends and B100 will have significantly higher density, viscosity, and surface tension compared to conventional diesel. In combination with the high boiling point, these properties may impact fuel spray atomization and evaporation, and additional research is needed in this area.

4.
Environ Sci Technol ; 47(6): 2990-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23398464

RESUMO

Nine flex-fuel vehicles meeting Tier 1, light duty vehicle-low emission vehicle (LDV-LEV), light duty truck 2-LEV (LDT2-LEV), and Tier 2 emission standards were tested over hot-start and cold-start three-phase LA92 cycles for nonmethane organic gases, ethanol, acetaldehyde, formaldehyde, acetone, nitrous oxide, nitrogen oxides (NO(x)), carbon monoxide (CO), and carbon dioxide (CO(2)), as well as fuel economy. Emissions were measured immediately after refueling with E40. The vehicles had previously been adapted to either E10 or E76. An overall comparison of emissions and fuel economy behavior of vehicles running on E40 showed results generally consistent with adaptation to the blend after the length of the three-phase hot-start LA92 test procedure (1735 s, 11 miles). However, the single LDT2-LEV vehicle, a Dodge Caravan, continued to exhibit statistically significant differences in emissions for most pollutants when tested on E40 depending on whether the vehicle had been previously adapted to E10 or E76. The results were consistent with an overestimate of the amount of ethanol in the fuel when E40 was added immediately after the use of E76. Increasing ethanol concentration in fuel led to reductions in fuel economy, NO(x), CO, CO(2), and acetone emissions as well as increases in emissions of ethanol, acetaldehyde, and formaldehyde.


Assuntos
Etanol/análise , Gasolina/análise , Emissões de Veículos/análise , Acetaldeído/análise , Acetona/análise , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Formaldeído/análise , Veículos Automotores/normas , Óxidos de Nitrogênio/análise
5.
Environ Sci Technol ; 47(23): 13865-72, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24180630

RESUMO

Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested.


Assuntos
Álcoois/análise , Gasolina/análise , Emissões de Veículos/análise , 1-Butanol/análise , Poluentes Atmosféricos/análise , Intervalos de Confiança , Etanol/análise , Hidrocarbonetos/análise , Pressão de Vapor
6.
Environ Sci Technol ; 44(21): 8343-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20886845

RESUMO

The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Filtração , Emissões de Veículos/prevenção & controle , Aldeídos/análise , Biocombustíveis , Hidrocarbonetos/análise , Cetonas/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise , Emissões de Veículos/análise
7.
J Hazard Mater ; 400: 123198, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32585513

RESUMO

The hazards to health and the environment associated with the transportation sector include smog, particulate matter, and greenhouse gas emissions. Conversion of lignocellulosic biomass into biofuels has the potential to provide significant amounts of infrastructure-compatible liquid transportation fuels that reduce those hazardous materials. However, the development of these technologies is inefficient, due to: (i) the lack of a priori fuel property consideration, (ii) poor shared vocabulary between process chemists and fuel engineers, and (iii) modern and future engines operating outside the range of traditional autoignition metrics such as octane or cetane numbers. In this perspective, we describe an approach where we follow a "fuel-property first" design methodology with a sequence of (i) identifying the desirable fuel properties for modern engines, (ii) defining molecules capable of delivering those properties, and (iii) designing catalysts and processes that can produce those molecules from a candidate feedstock in a specific conversion process. Computational techniques need to be leveraged to minimize expenses and experimental efforts on low-promise options. This concept is illustrated with current research information available for biomass conversion to fuels via catalytic fast pyrolysis and hydrotreating; outstanding challenges and research tools necessary for a successful outcome are presented.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Catálise , Material Particulado
8.
Environ Sci Process Impacts ; 22(7): 1461-1474, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32558863

RESUMO

With an ongoing interest in displacing petroleum-based sources of energy with biofuels, there is a need to measure and model the formation and composition of secondary organic aerosol (SOA) from organic compounds present in biofuels. We performed chamber experiments to study SOA formation from four recently identified biofuel molecules and mixtures and commercial gasoline under high NOx conditions: diisobutylene, cyclopentanone, an alkylfuran mixture, and an ethanol-to-hydrocarbon (ETH) mixture. Cyclopentanone and diisobutylene had a significantly lower potential to form SOA compared to commercial gasoline, with SOA mass yields lower than or equal to 0.2%. The alkylfuran mixture had an SOA mass yield (1.6%) roughly equal to that of gasoline (2.0%) but ETH had an average SOA mass yield (11.5%) that was six times higher than that of gasoline. We used a state-of-the-science model to parameterize or simulate the SOA formation in the chamber experiments while accounting for the influence of vapor wall losses. Simulations performed with vapor wall losses turned off and at atmospherically relevant conditions showed that the SOA mass yields were higher than those measured in the chamber at the same photochemical exposure and were also higher than those estimated using a volatility basis set that was fit to the chamber data. The modeled SOA mass yields were higher primarily because they were corrected for vapor wall losses to the Teflon® chamber.


Assuntos
Aerossóis , Poluentes Atmosféricos , Gasolina , Biocombustíveis , Gases , Compostos Orgânicos
9.
Inhal Toxicol ; 19(12): 1033-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17917919

RESUMO

An overview of recent studies of the impact of biodiesel and biodiesel blends on air pollutant emissions and health effects is provided. Biodiesel blends of 20% produce reductions of 15% or higher (depending upon engine model and test cycle) in emissions of particulate matter, carbon monoxide, total hydrocarbons, and a group of toxic compounds including vapor-phase hydrocarbons from C1 to C12, aldehydes and ketones up to C8, and selected semivolatile and particle-phase PAH and NPAH. Based on the studies reviewed and recently acquired data, individual engines may show oxides of nitrogen increasing or decreasing, but on average there appears to be no net effect for blends of 20% biodiesel--the most common biodiesel blend. Exhaust from a diesel engine operating on 100% biodiesel was also shown to have only modest adverse effects in an animal exposure study. Studies of the impact of biodiesel on particle size have not produced consistent results and additional research in this area is needed. Biodiesel is also shown to significantly reduce life-cycle greenhouse gas emissions in comparison to petroleum diesel.


Assuntos
Poluição do Ar/prevenção & controle , Fontes Geradoras de Energia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Animais , Monóxido de Carbono/análise , Monóxido de Carbono/toxicidade , Humanos , Hidrocarbonetos/análise , Hidrocarbonetos/toxicidade , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/toxicidade , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade , Saúde Pública , Estados Unidos , United States Environmental Protection Agency/legislação & jurisprudência , Emissões de Veículos/análise
10.
J Air Waste Manag Assoc ; 59(2): 172-182, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29116923

RESUMO

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or "flex-fuel") vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a signifi-cant reduction in emissions of CO (20%), and no signifi-cant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P =0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

11.
Anal Chem ; 78(14): 4894-900, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16841908

RESUMO

The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

12.
Environ Sci Technol ; 36(2): 270-5, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11827062

RESUMO

A model of a heavy-duty vehicle driveline with automatic transmission has been developed for estimating engine speed and load from vehicle speed. The model has been validated using emissions tests conducted on three diesel vehicles on a chassis dynamometer and then on the engines removed from the vehicles tested on an engine dynamometer. Nitrogen oxide (NOx) emissions were proportional to work done by the engine. For two of the engines, the NOx/horsepower(HP) ratio was the same on the engine and on the chassis dynamometer tests. For the third engine NOx/HP was significantly higher from the chassis test, possibly due to the use of dual engine maps. The engine certification test generated consistently less particulate matter emissions on a gram per brake horsepower-hour basis than the Heavy Duty Transient and Central Business District chassis cycles. A good linear correlation (r2 = 0.97 and 0.91) was found between rates of HP increase integrated over the test cycle and PM emissions for both the chassis and the engine tests for two of the vehicles. The model also shows how small changes in vehicle speeds can lead to a doubling of load on the engine. Additionally, the model showed that it is impossible to drive a vehicle cycle equivalent to the heavy-duty engine federal test procedure on these vehicles.


Assuntos
Modelos Teóricos , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Condução de Veículo , Engenharia , Previsões
13.
Environ Sci Technol ; 37(3): 630-7, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12630482

RESUMO

The objective of this study was to begin to quantify the benefits of a smoke opacity-based (SAE J1667 test) inspection and maintenance program. Twenty-six vehicles exhibiting visible smoke emissions were recruited: 14 pre-1991 vehicles and 12 1991 and later model year vehicles. Smoke opacity and regulated pollutant emissions via chassis dynamometer were measured, with testing conducted at 1609 m above sea level. Twenty of the vehicles were then repaired with the goal of lowering visible smoke emission, and the smoke opacity testing and pollutant emissions measurements were repeated. For the pre-1991 vehicles actually repaired, pre-repair smoke opacity averaged 39% and PM averaged 5.6 g/mi. NOx emissions averaged 22.1 g/mi. After repair, the average smoke opacity had declined to 26% and PM declined to 3.3 g/mi, while NOx emissions increased to 30.9 g/mi. For the 1991 and newer vehicles repaired, pre-repair smoke opacity averaged 59% and PM averaged 2.2 g/mi. NOx emissions averaged 12.1 g/mi. After repair, the average opacity had declined to 30% and PM declined to 1.3 g/mi, while NOx increased slightly to 14.4 g/mi. For vehicles failing the California opacity test at >55% for pre-1991 and >40% for 1991 and later model years, the changes in emissions exhibited a high degree of statistical significance. The average cost of repairs was 1088 dollars, and the average is very similar for both the pre-1991 and 1991+ model year groups. Smoke opacity was shown to be a relatively poor predictor of driving cycle PM emissions. Peak CO or peak CO and THC as measured during a snap-acceleration were much better predictors of driving cycle PM emissions.


Assuntos
Poluentes Atmosféricos/análise , Veículos Automotores , Emissões de Veículos/análise , Custos e Análise de Custo , Engenharia , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Valor Preditivo dos Testes , Fumaça/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA