Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 256(3): 262-268, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883532

RESUMO

Up to 50% of amyotrophic lateral sclerosis patients present with cognitive deficits in addition to motor dysfunction, but the molecular mechanisms underlying diverse clinical and pathological presentations remain poorly understood. There is therefore an unmet need to identify molecular drivers of cognitive dysfunction to enable better therapeutic targeting and prognostication. To address this, we employed a non-biased approach to identify molecular targets using a deeply phenotyped, clinically stratified cohort of cognitively affected and unaffected brain regions from three brain regions of 13 amyotrophic lateral sclerosis patients with the same cognitive screening test performed during life. Using NanoString molecular barcoding as a sensitive mRNA sequencing technique on post-mortem tissue, we profiled a data-driven panel of 770 genes using the Neuropathology Panel, followed by region and cell type-specific validation using BaseScope in situ hybridisation and immunohistochemistry. We identified 50 significantly dysregulated genes that are distinct between cognitively affected and unaffected brain regions. Using BaseScope in situ hybridisation, we also demonstrate that macromolecular complex regulation, notably NLRP3 inflammasome modulation, is a potential, therapeutically targetable, pathological correlate of cognitive resilience in ALS. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/imunologia , Cognição , Disfunção Cognitiva/genética , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Resiliência Psicológica , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/radioterapia , Encéfalo/fisiopatologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Perfilação da Expressão Gênica , Humanos , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Transcriptoma
2.
J Pathol ; 258(4): 366-381, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070099

RESUMO

Clinical heterogeneity observed across patients with amyotrophic lateral sclerosis (ALS) is a known complicating factor in identifying potential therapeutics, even within cohorts with the same mutation, such as C9orf72 hexanucleotide repeat expansions (HREs). Thus, further understanding of pathways underlying this heterogeneity is essential for appropriate ALS trial stratification and the meaningful assessment of clinical outcomes. It has been shown that both inflammation and protein misfolding can influence ALS pathogenesis, such as the manifestation or severity of motor or cognitive symptoms. However, there has yet to be a systematic and quantitative assessment of immunohistochemical markers to interrogate the potential relevance of these pathways in an unbiased manner. To investigate this, we extensively characterised features of commonly used glial activation and protein misfolding stains in thousands of images of post-mortem tissue from a heterogeneous cohort of deeply clinically profiled patients with a C9orf72 HRE. Using a random forest model, we show that microglial staining features are the most accurate classifiers of disease status in our panel and that clinicopathological relationships exist between microglial activation status, TDP-43 pathology, and language dysfunction. Furthermore, we detected spatially resolved changes in fused in sarcoma (FUS) staining, suggesting that liquid-liquid phase shift of this aggregation-prone RNA-binding protein may be important in ALS caused by a C9orf72 HRE. Interestingly, no one feature alone significantly impacted the predictiveness of the model, indicating that the collective examination of all features, or a combination of several features, is what allows the model to be predictive. Our findings provide further support to the hypothesis of dysfunctional immune regulation and proteostasis in the pathogenesis of C9-ALS and provide a framework for digital analysis of commonly used neuropathological stains as a tool to enrich our understanding of clinicopathological relationships within and between cohorts. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Microglia/patologia , Mutação
3.
Acta Neuropathol ; 141(2): 257-279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398403

RESUMO

Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/patologia , Transporte de Elétrons/genética , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Células do Corno Posterior/patologia
4.
J Pathol ; 250(1): 67-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31579943

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterised by progressive motor neuron degeneration. Although there are over 40 genes associated with causal monogenetic mutations, the majority of ALS patients are not genetically determined. Causal ALS mutations are being increasingly mechanistically studied, though how these mechanisms converge and diverge between the multiple known familial causes of ALS (fALS) and sporadic forms of ALS (sALS) and furthermore between different neuron types, is poorly understood. One common pathway that is implicated in selective motor neuron death is enhanced α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPAR)-mediated excitoxicity. Specifically, human in vitro and pathological evidence has linked the C9orf72 repeat expansion mutation to a relative increase in the Ca2+ -permeable AMPAR population due to AMPAR subunit dysregulation. Here, we provide the first comparative quantitative assessment of the expression profile of AMPAR subunit transcripts, using BaseScope, in post-mortem lower motor neurons (spinal cord, anterior horn), upper motor neurons (motor cortex) and neurons of the pre-frontal cortex in sALS and fALS due to mutations in SOD1 and C9orf72. Our data indicated that AMPAR dysregulation is prominent in lower motor neurons in all ALS cases. However, sALS and mutant C9orf72 cases exhibited GluA1 upregulation whereas mutant SOD1 cases displayed GluA2 down regulation. We also showed that sALS cases exhibited widespread AMPAR dysregulation in the motor and pre-frontal cortex, though the exact identity of the AMPAR subunit being dysregulated was dependent on brain region. In contrast, AMPAR dysregulation in mutant SOD1 and C9orf72 cases was restricted to lower motor neurons only. Our data highlight the complex dysregulation of AMPAR subunit expression that reflects both converging and diverging mechanisms at play between different brain regions and between ALS cohorts. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/metabolismo , Proteína C9orf72/genética , Mutação , Receptores de AMPA/genética , Receptores de Glutamato/genética , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Idoso , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Autopsia , Encéfalo/patologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia
5.
J Neurol Neurosurg Psychiatry ; 91(2): 149-157, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31515300

RESUMO

OBJECTIVE: Approximately 35% of patients with amyotrophic lateral sclerosis (ALS) exhibit mild cognitive deficits in executive functions, language and fluency, without dementia. The precise pathology of these extramotor symptoms has remained unknown. This study aimed to determine the pathological correlate of cognitive impairment in patients with non-demented ALS. METHODS: In-depth neuropathological analysis of 27 patients with non-demented ALS who had undergone cognitive testing (Edinburgh Cognitive and Behaviour ALS Screen (ECAS)) during life. Analysis involved assessing 43 kDa Tar-DNA binding protein (TDP-43) accumulation in brain regions specifically involved in executive functions, language functions and verbal fluency to ascertain whether functional deficits would relate to a specific regional distribution of pathology. RESULTS: All patients with cognitive impairment had TDP-43 pathology in extramotor brain regions (positive predictive value of 100%). The ECAS also predicted TDP-43 pathology with 100% specificity in brain regions associated with executive, language and fluency domains. We also detected a subgroup with no cognitive dysfunction, despite having substantial TDP-43 pathology, so called mismatch cases. CONCLUSIONS: Cognitive impairment as detected by the ECAS is a valid predictor of TDP-43 pathology in non-demented ALS. The profile of mild cognitive deficits specifically predicts regional cerebral involvement. These findings highlight the utility of the ECAS in accurately assessing the pathological burden of disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/psicologia , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas de Ligação a DNA/metabolismo , Função Executiva , Transtornos da Linguagem/metabolismo , Comportamento Verbal , Disfunção Cognitiva/complicações , Feminino , Humanos , Transtornos da Linguagem/complicações , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos/estatística & dados numéricos
6.
Nat Neurosci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961228

RESUMO

Age is a major nonmodifiable risk factor for ischemic stroke. Central nervous system-associated macrophages (CAMs) are resident immune cells located along the brain vasculature at the interface between the blood circulation and the parenchyma. By using a clinically relevant thromboembolic stroke model in young and aged male mice and corresponding human tissue samples, we show that during aging, CAMs acquire a central role in orchestrating immune cell trafficking after stroke through the specific modulation of adhesion molecules by endothelial cells. The absence of CAMs provokes increased leukocyte infiltration (neutrophils and CD4+ and CD8+ T lymphocytes) and neurological dysfunction after stroke exclusively in aged mice. Major histocompatibility complex class II, overexpressed by CAMs during aging, plays a significant role in the modulation of immune responses to stroke. We demonstrate that during aging, CAMs become central coordinators of the neuroimmune response that ensure a long-term fine-tuning of the immune responses triggered by stroke.

7.
Sci Adv ; 9(16): eabq0651, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083530

RESUMO

Although microglial activation is widely found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the underlying mechanism(s) are poorly understood. Here, using human-induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harboring the most common ALS/FTD mutation (C9orf72, mC9-MG), gene-corrected isogenic controls (isoC9-MG), and C9orf72 knockout hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated immune response upon stimulation with lipopolysaccharide. Analysis of the C9ORF72 interactome revealed that C9ORF72 interacts with regulators of autophagy and functional studies showed impaired initiation of autophagy in mC9-MG and C9KO-MG. Coculture studies with motor neurons (MNs) demonstrated that the autophagy deficit in mC9-MG drives increased vulnerability of mC9-MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated both cell-autonomous functional deficits in hiPSC-MG and MN death in MG-MN coculture. Together, these findings reveal an important role for C9ORF72 in regulating immune homeostasis and identify dysregulation in myeloid cells as a contributor to neurodegeneration in ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Microglia/metabolismo , Autofagia/genética
8.
BMJ Neurol Open ; 4(1): e000238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265844

RESUMO

Aims: Pharmacological activation of the antioxidative transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) improves outcomes in experimental models of intracerebral haemorrhage (ICH). However, the Nrf2 pathway has not been previously studied in humans after ICH. Our study aims to address this gap. Methods: We selected cases with fatal ICH from a prospective community-based inception cohort study and age-matched and sex-matched controls who died suddenly of non-neurological disease. We used immunohistochemistry to quantify Nrf2 (% total area stained overall and % of nuclei stained) and CD68 expression in controls and perihaematomal, ipsilateral and contralateral brain tissue from cases. We measured downstream haem oxygenase-1 (HMOX1) and NAD(P)H dehydrogenase quinone 1 [NQO1] expression using RNA in situ hybridisation. Results: 26 ICH cases (median age: 82 (IQR 76-86); 13 (50%) male) and eight controls (median age: 79 (IQR 77-80); 3 (37.5%) male) were included. We found no significant differences in overall % of Nrf2 staining between ICH cases and controls. However, the mean % of nuclei staining for Nrf2 seemed higher in perihaematomal compared with contralateral regions, although this was only statistically significant >60 days after ICH (25% (95% CI 17% to 33%) vs 14% (95% CI 11% to 17%), p=0.029). The percentage of perihaematomal tissue staining for CD68 was higher >60 days after ICH (6.75%, 95% CI 2.78% to 10.73%) compared with contralateral tissue (1.45%, 95% CI 0.93% to 1.96%, p=0.027) and controls (1.08%, 95% CI 0.20% to 1.97%, p=0.0008). RNA in situ hybridisation suggested increased abundance of HMOX1 and NQO1 transcripts in perihaematomal versus distant ipsilateral brain tissue obtained <7 days from onset of ICH. Conclusions: We found evidence of Nrf2 activation in human brain tissue after ICH. Pharmacological augmentation of Nrf2 activation after ICH might be a promising therapeutic approach.

9.
Nat Commun ; 13(1): 135, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013236

RESUMO

Alzheimer's disease (AD) alters astrocytes, but the effect of Aß and Tau pathology is poorly understood. TRAP-seq translatome analysis of astrocytes in APP/PS1 ß-amyloidopathy and MAPTP301S tauopathy mice revealed that only Aß influenced expression of AD risk genes, but both pathologies precociously induced age-dependent changes, and had distinct but overlapping signatures found in human post-mortem AD astrocytes. Both Aß and Tau pathology induced an astrocyte signature involving repression of bioenergetic and translation machinery, and induction of inflammation pathways plus protein degradation/proteostasis genes, the latter enriched in targets of inflammatory mediator Spi1 and stress-activated cytoprotective Nrf2. Astrocyte-specific Nrf2 expression induced a reactive phenotype which recapitulated elements of this proteostasis signature, reduced Aß deposition and phospho-tau accumulation in their respective models, and rescued brain-wide transcriptional deregulation, cellular pathology, neurodegeneration and behavioural/cognitive deficits. Thus, Aß and Tau induce overlapping astrocyte profiles associated with both deleterious and adaptive-protective signals, the latter of which can slow patho-progression.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Encéfalo/metabolismo , Neuroproteção/genética , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/citologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homozigoto , Humanos , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Fosforilação , Proteostase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas tau/metabolismo
10.
Front Neurosci ; 15: 705306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539336

RESUMO

Pathological hallmarks of amyotrophic lateral sclerosis (ALS), including protein misfolding, are well established in oligodendrocytes. More recently, an RNA trafficking deficit of key myelin proteins has been suggested in oligodendrocytes in ALS but the extent to which this affects myelination and the relative contribution of this to disease pathogenesis is unclear. ALS autopsy research findings showing demyelination contrasts with the routine clinical-pathological workup of ALS cases where it is rare to see white matter abnormalities other than simple Wallerian degeneration secondary to widespread neuronal loss. To begin to address this apparent variance, we undertook a comprehensive evaluation of myelination at an RNA, protein and structural level using human pathological material from sporadic ALS patients, genetic ALS patients (harboring C9orf72 mutation) and age- and sex-matched non-neurological controls. We performed (i) quantitative spatial profiling of the mRNA transcript encoding myelin basic protein (MBP), (ii) quantification of MBP protein and (iii) the first quantitative structural assessment of myelination in ALS post-mortem specimens by electron microscopy. We show no differences in MBP protein levels or ultrastructural myelination, despite a significant dysregulation in the subcellular trafficking of MBP mRNA in ALS patients compared to controls. We therefore confirm that whilst there are cell autonomous mRNA trafficking deficits affecting oligodendrocytes in ALS, this has no effect on myelin structure.

11.
BMC Immunol ; 11: 12, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20226050

RESUMO

BACKGROUND: Egg white must provide nutrients and protection to the developing avian embryo. One way in which this is achieved is an arsenal of antimicrobial proteins and peptides which are essentially extensions of the innate immune system. Gallin is a recently identified member of a family of peptides that are found in egg white. The function of this peptide family has not been identified and they are potentially antimicrobial. RESULTS: We have confirmed that there are at least 3 forms of the gallin gene in the chicken genome in 3 separate lines of chicken, all the forms are expressed in the tubular cells of the magnum region of the oviduct, consistent with its presence in egg white. mRNA expression levels are in the order 10,000 times greater in the magnum than the shell gland. The conservation between the multiple forms of gallin in the chicken genome compared with the conservation between gallin and other avian gallin like peptides, suggests that the gene duplication has occurred relatively recently in the chicken lineage. The gallin peptide family contains a six cysteine motif (C-X5-C-X3-C-X11-C-X3-C-C) found in all defensins, and is most closely related to avian beta-defensins, although the cysteine spacing differs. Further support for the classification comes from the presence of a glycine at position 10 in the 41 amino acid peptide. Recombinant gallin inhibited the growth of Escherischia coli (E. coli) at a concentration of 0.25 microM confirming it as part of the antimicrobial innate immune system in avian species. CONCLUSIONS: The relatively recent evolution of multiple forms of a member of a new defensin related group of peptides that we have termed ovodefensins, may be an adaptation to increase expression or the first steps in divergent evolution of the gene in chickens. The potent antimicrobial activity of the peptide against E. coli increases our understanding of the antimicrobial strategies of the avian innate immune system particularly those of the egg white and the evolution of the defensin family. The potential of this peptide and others in the family can now be investigated in a number of novel antimicrobial roles.


Assuntos
Anti-Infecciosos/imunologia , Proteínas do Ovo/genética , Duplicação Gênica , Xantenos/imunologia , beta-Defensinas/genética , Motivos de Aminoácidos/genética , Animais , Anti-Infecciosos/metabolismo , Galinhas/genética , Biologia Computacional , Proteínas do Ovo/imunologia , Proteínas do Ovo/metabolismo , Evolução Molecular , Feminino , Imunidade Inata/genética , Família Multigênica/genética , Família Multigênica/imunologia , Oviductos/imunologia , Oviductos/metabolismo , Filogenia , Xantenos/metabolismo , beta-Defensinas/imunologia
12.
Brain Commun ; 2(1): fcaa009, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32226938

RESUMO

The C9orf72 hexanucleotide repeat expansion is the commonest known genetic mutation in amyotrophic lateral sclerosis. A neuropathological hallmark is the intracellular accumulation of RNA foci. The role that RNA foci play in the pathogenesis of amyotrophic lateral sclerosis is widely debated. Historically, C9orf72 RNA foci have been identified using in situ hybridization. Here, we have implemented BaseScope™, a high-resolution modified in situ hybridization technique. We demonstrate that previous studies have underestimated the abundance of RNA foci in neurons and glia. This improved detection allowed us to investigate the abundance, regional distribution and cell type specificity of sense C9orf72 RNA foci in post-mortem brain and spinal cord tissue of six deeply clinically phenotyped C9orf72 patients and six age- and sex-matched controls. We find a correlation between RNA foci and the accumulation of transactive response DNA-binding protein of 43 kDa in spinal motor neurons (rs = 0.93; P = 0.008), but not in glia or cortical motor neurons. We also demonstrate that there is no correlation between the presence of RNA foci and the accumulation of transactive response DNA binding protein of 43 kDa in extra-motor brain regions. Furthermore, there is no association between the presence of RNA foci and cognitive indices. These results highlight the utility of BaseScope™ in the clinicopathological assessment of the role of sense RNA foci in C9orf72.

13.
Acta Neuropathol Commun ; 5(1): 81, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115989

RESUMO

It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.


Assuntos
Clusterina/metabolismo , Clusterina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Clusterina/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estresse do Retículo Endoplasmático/genética , Olho/metabolismo , Olho/ultraestrutura , Hemolinfa/citologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Larva , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios Motores/ultraestrutura , Neuroblastoma/patologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA