Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(4): 555-563, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37434470

RESUMO

To date, most reports of horizontal gene transfer (HGT) in fungi rely on genome sequence data and are therefore an indirect measure of HGT after the event has occurred. However, a novel group of class II-like transposons known as Starships may soon alter this status quo. Starships are giant transposable elements that carry dozens of genes, some of which are host-beneficial, and are linked to many recent HGT events in the fungal kingdom. These transposons remain active and mobile in many fungal genomes and their transposition has recently been shown to be driven by a conserved tyrosine-recombinase called 'Captain'. This perspective explores some of the remaining unanswered questions about how these Starship transposons move, both within a genome and between different species. We seek to outline several experimental approaches that can be used to identify the genes essential for Starship-mediated HGT and draw links to other recently discovered giant transposons outside of the fungal kingdom.

2.
BMC Plant Biol ; 24(1): 248, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580955

RESUMO

BACKGROUND: Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Egito , Melhoramento Vegetal , Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Proc Natl Acad Sci U S A ; 117(39): 24243-24250, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929037

RESUMO

The necrotrophic fungal pathogen Cochliobolus victoriae produces victorin, a host-selective toxin (HST) essential for pathogenicity to certain oat cultivars with resistance against crown rust. Victorin is a mixture of highly modified heterodetic cyclic hexapeptides, previously assumed to be synthesized by a nonribosomal peptide synthetase. Herein, we demonstrate that victorin is a member of the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Analysis of a newly generated long-read assembly of the C. victoriae genome revealed three copies of precursor peptide genes (vicA1-3) with variable numbers of "GLKLAF" core peptide repeats corresponding to the victorin peptide backbone. vicA1-3 are located in repeat-rich gene-sparse regions of the genome and are loosely clustered with putative victorin biosynthetic genes, which are supported by the discovery of compact gene clusters harboring corresponding homologs in two distantly related plant-associated Sordariomycete fungi. Deletion of at least one copy of vicA resulted in strongly diminished victorin production. Deletion of a gene encoding a DUF3328 protein (VicYb) abolished the production altogether, supporting its predicted role in oxidative cyclization of the core peptide. In addition, we uncovered a copper amine oxidase (CAO) encoded by vicK, in which its deletion led to the accumulation of new glycine-containing victorin derivatives. The role of VicK in oxidative deamination of the N-terminal glycyl moiety of the hexapeptides to the active glyoxylate forms was confirmed in vitro. This study finally unraveled the genetic and molecular bases for biosynthesis of one of the first discovered HSTs and expanded our understanding of underexplored fungal RiPPs.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Ascomicetos/genética , Desaminação , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidade , Deleção de Genes , Família Multigênica , Micotoxinas/genética , Micotoxinas/toxicidade , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
4.
Mol Ecol ; 30(21): 5390-5405, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211369

RESUMO

Convergent evolution leads to identical phenotypic traits in different species or populations. Convergence can be driven by standing variation allowing selection to favour identical alleles in parallel or the same mutations can arise independently. However, the molecular basis of such convergent adaptation remains often poorly resolved. Pesticide resistance in agricultural ecosystems is a hallmark of convergence in phenotypic traits. Here, we analyse the major fungal pathogen Zymoseptoria tritici causing serious losses on wheat and with fungicide resistance emergence across several continents. We sampled three population pairs each from a different continent spanning periods early and late in the application of fungicides. To identify causal loci for resistance, we combined knowledge from molecular genetics work and performed genome-wide association studies (GWAS) on a global set of isolates. We discovered yet unknown factors in azole resistance including a gene encoding membrane associated functions. We found strong support for the "hotspot" model of resistance evolution with convergent changes in a small set of loci but additional loci showed more population-specific allele frequency changes. Genome-wide scans of selection showed that half of all known resistance loci were overlapping a selective sweep region. Hence, the application of fungicides was one of the major selective agents acting on the pathogen over the past decades. Furthermore, loci identified through GWAS showed the highest overlap with selective sweep regions underlining the importance to map phenotypic trait variation in evolving populations. Our population genomic analyses highlighted that both de novo mutations and gene flow contributed to convergent pesticide adaptation.


Assuntos
Fungicidas Industriais , Praguicidas , Ecossistema , Estudo de Associação Genômica Ampla , Genômica , Doenças das Plantas/genética
5.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530713

RESUMO

Zymoseptoria tritici is a globally distributed fungal pathogen which causes Septoria tritici blotch on wheat. Management of the disease is attempted through the deployment of resistant wheat cultivars and the application of fungicides. However, fungicide resistance is commonly observed in Z. tritici populations, and continuous monitoring is required to detect breakdowns in fungicide efficacy. We recently reported azole-resistant isolates in Australia; however, it remained unknown whether resistance was brought into the continent through gene flow or whether resistance emerged independently. To address this question, we screened 43 isolates across five Australian locations for azole sensitivity and performed whole-genome sequencing on 58 isolates from seven locations to determine the genetic basis of resistance. Population genomic analyses showed extremely strong differentiation between the Australian population recovered after azoles began to be used and both Australian populations recovered before azoles began to be used and populations on different continents. The apparent absence of recent gene flow between Australia and other continents suggests that azole fungicide resistance has evolved de novo and subsequently spread within Tasmania. Despite the isolates being distinct at the whole-genome level, we observed combinations of nonsynonymous substitutions at the CYP51 locus identical to those observed elsewhere in the world. We observed nine previously reported nonsynonymous mutations as well as isolates that carried a combination of the previously reported L50S, S188N, A379G, I381V, Y459DEL, G460DEL, and N513K substitutions. Assays for the 50% effective concentration against a subset of isolates exposed to the tebuconazole and epoxiconazole fungicides showed high levels of azole resistance. The rapid, parallel evolution of a complex CYP51 haplotype that matches a dominant European haplotype demonstrates the enormous potential for de novo resistance emergence in pathogenic fungi.IMPORTANCE Fungicides are essential to control diseases in agriculture because many crops are highly susceptible to pathogens. However, many pathogens rapidly evolve resistance to fungicides. A large body of studies have described specific mutations conferring resistance and have often made inferences about the origins of resistance based on sequencing data from the target gene alone. Here, we show the de novo acquisition of resistance to the ubiquitously used azole fungicides in genetically isolated populations of the wheat pathogen Zymoseptoria tritici in Tasmania, Australia. We confirm evidence for parallel evolution through genome-scale analyses of representative worldwide populations. The emergence of complex resistance haplotypes following a well-documented recent introduction of azoles into Australian farming practices demonstrates how rapidly chemical resistance evolves in agricultural ecosystems.


Assuntos
Ascomicetos/genética , Azóis/farmacologia , Família 51 do Citocromo P450/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Triticum/microbiologia , Ascomicetos/efeitos dos fármacos , Austrália , Produtos Agrícolas , Farmacorresistência Fúngica/genética , Compostos de Epóxi/farmacologia , Proteínas Fúngicas/genética , Genética Populacional , Mutação , Doenças das Plantas/microbiologia , Análise de Sequência , Estrobilurinas/farmacologia , Triazóis/farmacologia , Sequenciamento Completo do Genoma
6.
Theor Appl Genet ; 131(12): 2765-2773, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238255

RESUMO

KEY MESSAGE: A new and dominant R gene Stb19 is identified from a soft wheat cultivar 'Lorikeet' and was mapped on the distal region of chromosome 1DS. Two tightly linked KASP markers were also discovered and validated for molecular-assisted breeding programs. A new R gene, designated as Stb19, provides resistance to Zymoseptoria tritici in wheat. This new dominant gene resides on the short arm of chromosome 1D, exhibiting complete resistance to three Z. tritici isolates, WAI332, WAI251, and WAI161, at the seedling stage. A genetic linkage map, based on an F2:3 population of 'Lorikeet' and 'Summit,' found the Stb19 gene at a 9.3 cM region on 1DS, closely linked with two Kompetitive Allele-Specific PCR markers, snp_4909967 and snp_1218021. Further, the two markers were tested and validated in another F2:3 population and 266 different wheat accessions, which gave over 95% accuracy of resistance/susceptibility prediction. Combined with the physical location of the identified SNPs and the previous evidence of gene order on chromosome 1DS (centromere-Sr45-Sr33-Lr21-telomere), Stb19 is proposed to be located between Sr33 and Lr21. Thus, the newly discovered Stb19 along with the KASP markers represents an increase in genetic resources available for wheat breeding resistance to Z. tritici.


Assuntos
Resistência à Doença/genética , Genes Dominantes , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Marcadores Genéticos , Doenças das Plantas/microbiologia , Triticum/microbiologia
7.
Fungal Genet Biol ; 109: 36-45, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29074072

RESUMO

White grain disorder (WGD) is a recently emerged wheat disease in Australia caused by three Botryosphaeriaceae fungi, from the genus Eutiarosporella. These species are E. tritici-australis, E. darliae, and E. pseudodarliae. Characterisation of the mating type genes for the WGD-species show that the genome sequence of a single E. darliae and E. pseudodarliae isolate both harbour MAT1-2-1 and MAT1-1-1, which suggests that these species are homothallic. However, unlike most other characterised mating-type loci from other homothallic Dothideomycetes, these species' MAT1-1-1 are located at a separate locus, inserted within the coding region of another gene. The sequenced strain of E. tritici-australis analysed did not harbour MAT1-1-1. Including the sequenced strain, we screened the mating type genes present in 16 E. tritici-australis individuals isolated from infected grain from fields in South Australia. Of these 16, 11 harbour MAT1-1-1 and the other five harbour MAT1-2-1. The genome of a MAT1-1-1 harbouring isolate was re-sequenced, which demonstrated that MAT1-1-1 was present at the MAT locus. We examined non-coding DNA surrounding the MAT1-1-1 gene in E. pseudodarliae and observed fragments of the MAT locus both up and downstream. These fragments and their orientation around MAT1-1-1 is similar to characterised heterothallic Botryosphaeriaceae. Based on these gene arrangements, we conclude that the new MAT1-1-1 containing locus likely originated from a cryptic DNA integration event between two heterothallic individuals. We hypothesise that this integration event led to the formation of a homothallic lineage, which is the common ancestor of E. darliae and E. pseudodarliae.


Assuntos
Ascomicetos/fisiologia , Genes Fúngicos Tipo Acasalamento , Especiação Genética , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Fertilidade/genética
8.
Fungal Genet Biol ; 79: 29-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092787

RESUMO

The growth of microorganisms in planta is often categorized based on their methods of nutrient acquisition and the physical appearance of symptoms on the host. For example, biotrophs thrive on living tissue while necrotrophic pathogens often quickly lyse cells to access nutrients. Hemibiotrophs are pathogens that initially feed on living host tissue without causing visible symptoms prior to switching to necrotrophy. During infection of wheat, the pathogen Zymoseptoria tritici undergoes a prolonged and asymptomatic phase during which it grows slowly and protects itself from host defenses prior to eliciting a strong necrotic response. However careful analyses of the asymptomatic phase indicate that the pathogen does not alter host growth, casting doubt on the biotrophic nature of this asymptomatic period. Consequently, we question whether Z. tritici is correctly defined as a hemibiotroph.


Assuntos
Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/metabolismo
9.
Fungal Genet Biol ; 79: 71-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092791

RESUMO

The wheat pathogen Zymoseptoria tritici possesses a large number of accessory chromosomes that may be present or absent in its genome. The genome of the reference isolate IPO323 has been assembled to a very high standard and contains 21 full length chromosome sequences, 8 of which represent accessory chromosomes. The IPO323 reference, when combined with low-cost next-generation sequencing and bioinformatics, can be used as a powerful tool to assess the presence or absence of accessory chromosomes. We present an outline of a range of bioinformatics techniques that can be applied to the analysis of presence-absence variation among accessory chromosomes across 13 novel isolates of Z. tritici.


Assuntos
Ascomicetos/genética , Biologia Computacional , Genes Fúngicos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Cromossomos Fúngicos
10.
PLoS Pathog ; 8(1): e1002467, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22241993

RESUMO

The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas/biossíntese , Triticum/metabolismo , Resistência à Doença/fisiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Sinais Direcionadores de Proteínas/fisiologia , Explosão Respiratória/genética , Triticum/genética
11.
PLoS Pathog ; 8(9): e1002952, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028337

RESUMO

Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.


Assuntos
Fusarium/genética , Genoma Fúngico , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Sequência de Bases , Proteínas Fúngicas/genética , Fusarium/classificação , Fusarium/patogenicidade , Transferência Genética Horizontal , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
12.
New Phytol ; 199(1): 241-251, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23550706

RESUMO

Population genetic and phylogenetic studies have shown that Phaeosphaeria nodorum is a member of a species complex that probably shares its center of origin with wheat (Triticum aestivum and Triticum durum). We examined the evolutionary histories of three known necrotrophic effectors (NEs) produced by P. nodorum and compared them with neutral loci. We screened over 1000 individuals for the presence/absence of each effector and assigned each individual to a multi-effector genotype. Diversity at each NE locus was assessed by sequencing c. 200 individuals for each locus. We found significant differences in effector frequency among populations. We propose that these differences reflect the presence/absence of the corresponding susceptibility gene in wheat cultivars. The population harboring the highest sequence diversity was different for each effector locus and never coincided with populations harboring the highest diversity at neutral loci. Coalescent and phylogenetic analyses showed a discontinuous presence of all three NEs among nine closely related Phaeosphaeria species. Only two of the nine species were found to harbor NEs. We present evidence that the three described NEs of P. nodorum were transmitted to its sister species, Phaeosphaeria avenaria tritici 1, via interspecific hybridization.


Assuntos
Ascomicetos/genética , Evolução Biológica , Variação Genética , Filogenia , Triticum/microbiologia , Ascomicetos/fisiologia , Southern Blotting , Genética Populacional , Haplótipos/genética , Hibridização Genética , Dados de Sequência Molecular , Filogeografia , Reação em Cadeia da Polimerase , Triticum/genética , Triticum/fisiologia
13.
Nat Commun ; 14(1): 1059, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828814

RESUMO

Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.


Assuntos
Aclimatação , Adaptação Fisiológica , Humanos , Virulência/genética , Genômica , Doenças das Plantas/microbiologia
14.
Fungal Genet Biol ; 49(11): 882-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22922546

RESUMO

The origin of the fungal wheat pathogen Phaeosphaeria nodorum remains unclear despite earlier intensive global population genetic and phylogeographical studies. We sequenced 1683 bp distributed across three loci in 355 globally distributed Phaeosphaeria isolates, including 74 collected in Iran near the center of origin of wheat. We identified nine phylogenetically distinct clades, including two previously unknown species tentatively named P1 and P2 collected in Iran. Coalescent analysis indicates that P1 and P2 are sister species of P. nodorum and the other Phaeosphaeria species identified in our analysis. Two species, P. nodorum and P. avenaria f. sp. tritici 1 (Pat1), comprised ~85% of the sampled isolates, making them the dominant wheat-infecting pathogens within the species complex. We designed a PCR-RFLP assay to distinguish P. nodorum from Pat1. Approximately 4% of P. nodorum and Pat1 isolates showed evidence of hybridization. Measures of private allelic richness at SSR and sequence loci suggest that the center of origin of P. nodorum coincides with its host in the Fertile Crescent. We hypothesize that the origin of this species complex is also in the Fertile Crescent, with four species out of nine found exclusively in the Iranian collections.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Sequência de Bases , Variação Genética , Irã (Geográfico) , Iraque , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição
15.
Front Plant Sci ; 13: 990915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352863

RESUMO

Septoria tritici blotch (STB) has been ranked the third most important wheat disease in the world, threatening a large area of wheat production. Although major genes play an important role in the protection against Zymoseptoria tritici infection, the lifespan of their resistance unfortunately is very short in modern wheat production systems. Combinations of quantitative resistance with minor effects, therefore, are believed to have prolonged and more durable resistance to Z. tritici. In this study, new quantitative trait loci (QTLs) were identified that are responsible for seedling-stage resistance and adult-plant stage resistance (APR). More importantly was the characterisation of a previously unidentified QTL that can provide resistance during different stages of plant growth or multi-stage resistance (MSR). At the seedling stage, we discovered a new isolate-specific QTL, QSt.wai.1A.1. At the adult-plant stage, the new QTL QStb.wai.6A.2 provided stable and consistent APR in multiple sites and years, while the QTL QStb.wai.7A.2 was highlighted to have MSR. The stacking of multiple favourable MSR alleles was found to improve resistance to Z. tritici by up to 40%.

16.
Curr Opin Plant Biol ; 68: 102229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567925

RESUMO

Plants have proficient tools that allow them to survive interactions with pathogens. Upon attack, they respond with specific countermeasures, which are controlled by the immune system. However, defences can fail and this failure exposes plants to fast-spreading devastation. Trees face similar challenges to other plants and their immune system allows them to mount defences against pathogens. However, their slow growth, longevity, woodiness, and size can make trees a challenging system to study. Here, we review scientific successes in plant systems, highlight the key challenges and describe the enormous opportunities for pathology research in trees. We discuss the benefits that scaling-up our understanding on tree-pathogen interactions can provide in the fight against plant pathogenic threats.


Assuntos
Plantas , Árvores
17.
PLoS Pathog ; 5(9): e1000581, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19806176

RESUMO

The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum-wheat interaction, as well as vital information for the general characterization of necrotroph-plant interactions.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/fisiologia , Micotoxinas/fisiologia , Doenças das Plantas/microbiologia , Triticum/genética , Sequência de Aminoácidos , Ascomicetos/metabolismo , Sequência de Bases , Southern Blotting , Ditiotreitol , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Variação Genética , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Pichia/genética , Pichia/metabolismo , Doenças das Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Triticum/microbiologia , Virulência
18.
Mol Plant Pathol ; 22(7): 800-816, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949756

RESUMO

Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is a fungal wheat pathogen that causes significant global yield losses. Within Z. tritici populations, quantitative differences in virulence among different isolates are commonly observed; however, the genetic components that underpin these differences remain elusive. In this study, intraspecific comparative transcriptomic analysis was used to identify candidate genes that contribute to differences in virulence on the wheat cultivar WW2449. This led to the identification of a multicopy gene that was not expressed in the high-virulence isolate when compared to the medium- and low-virulence isolates. Further investigation suggested this gene resides in a 7.9-kb transposon. Subsequent long-read sequencing of the isolates used in the transcriptomic analysis confirmed that this gene did reside in an active Class II transposon, which is composed of four genes named REP9-1 to -4. Silencing and overexpression of REP9-1 in two distinct genetic backgrounds demonstrated that its expression alone reduces the number of pycnidia produced by Z. tritici during infection. The REP9-1 gene identified within a Class II transposon is the first discovery of a gene in a transposable element that influences the virulence of Z. tritici. This discovery adds further complexity to genetic loci that contribute to quantitative virulence in this important pathogen.


Assuntos
Ascomicetos/genética , Doenças das Plantas/microbiologia , Reprodução Assexuada/genética , Transcriptoma , Triticum/microbiologia , Virulência/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Perfilação da Expressão Gênica , Loci Gênicos/genética , Filogenia , Locos de Características Quantitativas/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-32257291

RESUMO

BACKGROUND: The genome-editing tool CRISPR/Cas9 has revolutionized gene manipulation by providing an efficient method to generate targeted mutations. This technique deploys the Cas9 endonuclease and a guide RNA (sgRNA) which interact to form a Cas9-sgRNA complex that initiates gene editing through the introduction of double stranded DNA breaks. We tested the efficacy of the CRISPR/Cas9 approach as a means of facilitating a variety of reverse genetic approaches in the wheat pathogenic fungus Parastagonospora nodorum. RESULTS: Parastagonospora nodorum protoplasts were transformed with the Cas9 protein and sgRNA in the form of a preassembled ribonuclear protein (RNP) complex targeting the Tox3 effector gene. Subsequent screening of the P. nodorum transformants revealed 100% editing of those mutants screened. We further tested the efficacy of RNP complex when co-transformed with a Tox3-Homology Directed Repair cassette harbouring 1 kb of homologous flanking DNA. Subsequent screening of resulting transformants demonstrated homologous recombination efficiencies exceeding 70%. A further transformation with a Tox3-Homology Directed Repair cassette harbouring a selectable marker with 50 bp micro-homology flanks was also achieved with 25% homologous recombination efficiency. The success of these homology directed repair approaches demonstrate that CRISPR/Cas9 is amenable to other in vivo DNA manipulation approaches such as the insertion of DNA and generating point mutations. CONCLUSION: These data highlight the significant potential that CRISPR/Cas9 has in expediting transgene-free gene knockouts in Parastagonospora nodorum and also in facilitating other gene manipulation approaches. Access to these tools will significantly decrease the time required to assess the requirement of gene for disease and to undertake functional studies to determine its role.

20.
Genome Biol Evol ; 11(3): 890-905, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30793159

RESUMO

White grain disorder is a recently emerged wheat disease in Australia, caused by Eutiarosporella darliae, E. pseudodarliae, and E. tritici-australis. The disease cycle of these pathogens and the molecular basis of their interaction with wheat are poorly understood. To address this knowledge gap, we undertook a comparative genomics analysis focused on the secondary metabolite gene repertoire among these three species. This analysis revealed a diverse array of secondary metabolite gene clusters in these pathogens, including modular polyketide synthase genes. These genes have only been previously associated with bacteria and this is the first report of such genes in fungi. Subsequent phylogenetic analyses provided strong evidence that the modular PKS genes were horizontally acquired from a bacterial or a protist species. We also uncovered a secondary metabolite gene cluster with three polyketide/nonribosomal peptide synthase genes (Hybrid-1, -2, and -3) in E. darliae and E. pseudodarliae. In contrast, only remnant and partial genes homologous to this cluster were identified in E. tritici-australis, suggesting loss of this cluster. Homologues of Hybrid-2 in other fungi have been proposed to facilitate disease in woody plants, suggesting a possible alternative host range for E. darliae and E. pseudodarliae. Subsequent assays confirmed that E. darliae and E. pseudodarliae were both pathogenic on woody plants, but E. tritici-australis was not, implicating woody plants as potential host reservoirs for the fungi. Combined, these data have advanced our understanding of the lifestyle and potential host-range of these recently emerged wheat pathogens and shed new light on fungal secondary metabolism.


Assuntos
Ascomicetos/genética , Evolução Biológica , Policetídeo Sintases/genética , Triticum/microbiologia , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Duplicação Gênica , Transferência Genética Horizontal , Genoma Fúngico , Doenças das Plantas , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA