Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 588(7838): 466-472, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971526

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Assuntos
Miocárdio/citologia , Análise de Célula Única , Transcriptoma , Adipócitos/classificação , Adipócitos/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Epitélio , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/anatomia & histologia , Átrios do Coração/citologia , Átrios do Coração/inervação , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/inervação , Homeostase/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Pericitos/classificação , Pericitos/metabolismo , Receptores de Coronavírus/análise , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Estromais/classificação , Células Estromais/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(21): e2203928119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35584116

RESUMO

Microtia is a congenital malformation that encompasses mild hypoplasia to complete loss of the external ear, or pinna. Although the contribution of genetic variation and environmental factors to microtia remains elusive, Amerindigenous populations have the highest reported incidence. Here, using both transmission disequilibrium tests and association studies in microtia trios (parents and affected child) and microtia cohorts enrolled in Latin America, we map an ∼10-kb microtia locus (odds ratio = 4.7; P = 6.78e-18) to the intergenic region between Roundabout 1 (ROBO1) and Roundabout 2 (ROBO2) (chr3: 78546526 to 78555137). While alleles at the microtia locus significantly increase the risk of microtia, their penetrance is low (<1%). We demonstrate that the microtia locus contains a polymorphic complex repeat element that is expanded in affected individuals. The locus is located near a chromatin loop region that regulates ROBO1 and ROBO2 expression in induced pluripotent stem cell­derived neural crest cells. Furthermore, we use single nuclear RNA sequencing to demonstrate ROBO1 and ROBO2 expression in both fibroblasts and chondrocytes of the mature human pinna. Because the microtia allele is enriched in Amerindigenous populations and is shared by some East Asian subjects with craniofacial malformations, we propose that both populations share a mutation that arose in a common ancestor prior to the ancient migration of Eurasian populations into the Americas and that the high incidence of microtia among Amerindigenous populations reflects the population bottleneck that occurred during the migration out of Eurasia.


Assuntos
Indígena Americano ou Nativo do Alasca , Microtia Congênita , Microtia Congênita/genética , Orelha Externa , Efeito Fundador , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Indígena Americano ou Nativo do Alasca/genética , Proteínas Roundabout
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658374

RESUMO

Hypertrophic cardiomyopathy (HCM) is a disease of heart muscle, which affects ∼1 in 500 individuals and is characterized by increased left ventricular wall thickness. While HCM is caused by pathogenic variants in any one of eight sarcomere protein genes, clinical expression varies considerably, even among patients with the same pathogenic variant. To determine whether background genetic variation or environmental factors drive these differences, we studied disease progression in 11 pairs of monozygotic HCM twins. The twin pairs were followed for 5 to 14 y, and left ventricular wall thickness, left atrial diameter, and left ventricular ejection fraction were collected from echocardiograms at various time points. All nine twin pairs with sarcomere protein gene variants and two with unknown disease etiologies had discordant morphologic features of the heart, demonstrating the influence of nonhereditable factors on clinical expression of HCM. Whole genome sequencing analysis of the six monozygotic twins with discordant HCM phenotypes did not reveal notable somatic genetic variants that might explain their clinical differences. Discordant cardiac morphology of identical twins highlights a significant role for epigenetics and environment in HCM disease progression.


Assuntos
Cardiomiopatia Hipertrófica , Ecocardiografia , Epigênese Genética , Ventrículos do Coração , Proteínas Musculares , Gêmeos Monozigóticos , Adolescente , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Pré-Escolar , Feminino , Seguimentos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
4.
Genet Med ; 25(1): 143-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260083

RESUMO

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Assuntos
Microtia Congênita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congênita/genética , Orelha/anormalidades , Face
5.
Proc Natl Acad Sci U S A ; 114(29): 7689-7694, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679633

RESUMO

Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C (LMNA) and myosin binding protein C (MYBPC3). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.


Assuntos
Proteínas de Transporte/genética , Lamina Tipo A/genética , Mutação , Splicing de RNA , Adulto , Idoso , Alelos , Cardiomiopatias/genética , Biologia Computacional , Feminino , Variação Genética , Genótipo , Células HEK293 , Haploinsuficiência , Cardiopatias/genética , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Marca-Passo Artificial , Linhagem , Sítios de Splice de RNA , Análise de Sequência de DNA , Adulto Jovem
6.
Genet Med ; 21(1): 133-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29892087

RESUMO

PURPOSE: We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS: Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS: A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION: Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Doenças Raras/diagnóstico , Doenças Raras/patologia
7.
Stroke ; 47(12): 3005-3013, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27895300

RESUMO

BACKGROUND AND PURPOSE: A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage. This study seeks to define a specific gene whose mutation leads to disease. METHODS: More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 (thrombospondin type 1 domain containing protein 1) mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses and functional studies performed using an in vitro endothelial cell model. RESULTS: A nonsense mutation in THSD1 was identified that segregated with the 9 affected (3 suffered subarachnoid hemorrhage and 6 had unruptured IA) and was absent in 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered subarachnoid hemorrhage (1.6% [95% confidence interval, 0.8%-3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89 040 chromosomes in Exome Aggregation Consortium (ExAC) database (P<0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. CONCLUSIONS: This report identifies THSD1 mutations in familial and sporadic IA patients and shows that THSD1 loss results in cerebral bleeding in 2 animal models. This finding provides new insight into IA and subarachnoid hemorrhage pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion.


Assuntos
Aneurisma Roto/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Trombospondinas/genética , Animais , Códon sem Sentido , Modelos Animais de Doenças , Exoma , Predisposição Genética para Doença , Humanos , Camundongos , Linhagem , Peixe-Zebra , Proteínas de Peixe-Zebra
8.
Circulation ; 130(14): 1158-67, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25078086

RESUMO

BACKGROUND: The geographic isolation and homogeneous population of Iceland are ideally suited to ascertain clinical and genetic characteristics of hypertrophic cardiomyopathy (HCM) at the population level. METHODS AND RESULTS: Medical records and cardiac imaging studies obtained between 1997 and 2010 were reviewed to identify Icelandic patients with HCM. Surviving patients were recruited for clinical and genetic studies. A previously identified Icelandic mutation, MYBPC3 c.927-2A>G, was genotyped, and mutation-negative samples were sequenced for HCM genes and other hypertrophic genes. Record review identified 180 patients with HCM. Genetic analyses of 151 patients defined pathogenic mutations in 101 (67%), including MYBPC3 c.927-2A>G (88 patients, 58%), 4 other MYBPC3 or MYH7 mutations (5 patients, 3.3%), and 2 GLA mutations (8 patients, 5.3%). Haplotype and genetic genealogical data defined MYBPC3 c.927-2A>G as a founder mutation, introduced into the Icelandic population in the 15th century, with a current population prevalence of 0.36%. MYBPC3 c.927-2A>G mutation carriers exhibited phenotypic diversity but were younger at diagnosis (42 versus 49 years; P=0.001) and sustained more adverse events (15% versus 2%; P=0.02) than mutation-negative patients. All-cause mortality for patients with HCM was similar to that of an age-matched Icelandic population (hazard ratio, 0.98; P=0.9). HCM-related mortality (0.78%/y) occurred at a mean age of 68 compared with 81 years for non-HCM-related mortality (P=0.02). CONCLUSIONS: A founder MYBPC3 mutation that arose >550 years ago is the predominant cause of HCM in Iceland. The MYBPC3 c.927-2A>G mutation is associated with low adverse event rates but earlier cardiovascular mortality, illustrating the impact of genotype on outcomes in HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/mortalidade , Proteínas de Transporte/genética , Efeito Fundador , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Islândia/epidemiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Prevalência , Adulto Jovem
9.
N Engl J Med ; 366(7): 619-28, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22335739

RESUMO

BACKGROUND: Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS: We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS: We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS: TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Mutação , Proteínas Quinases/genética , Adulto , Cardiomiopatia Dilatada/patologia , Conectina , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Análise de Sequência de DNA/métodos , Deleção de Sequência
10.
Ann Neurol ; 75(5): 793-798, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24771548

RESUMO

We report a 5-generation family with phenotypically diverse neurodegenerative disease including relentlessly progressive choreoathetoid movements, dysarthria, dysphagia, spastic paralysis, and behavioral dementia in descendants of a 67-year-old woman with amyotrophic lateral sclerosis. Disease onset varied with gender, occurring in male children and adult women. Exome sequence analyses revealed a novel mutation (c.1490C>T, p.P497L) in the ubiquilin-2 gene (UBQLN2) with X-linked inheritance in all studied affected individuals. As ubiquilin-2-positive inclusions were identified in brain, we suggest that mutant peptide predisposes to protein misfolding and accumulation. Our findings expand the spectrum of neurodegenerative phenotypes caused by UBQLN2 mutations.


Assuntos
Proteínas de Ciclo Celular/genética , Heterogeneidade Genética , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Mutação/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Idoso , Proteínas Relacionadas à Autofagia , Pré-Escolar , Feminino , Genes Dominantes , Humanos , Masculino , Linhagem , Dobramento de Proteína , Adulto Jovem
11.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828726

RESUMO

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Síndrome de Down , Células Endoteliais , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Marcadores Genéticos , Fenótipo , Via de Sinalização Wnt
12.
Hum Mutat ; 34(10): 1347-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23775976

RESUMO

Microtia is a rare, congenital malformation of the external ear that in some cases has a genetic etiology. We ascertained a three-generation family with bilateral microtia and hearing loss segregating as an autosomal dominant trait. Exome sequencing of affected family members detected only seven shared, rare, heterozygous, nonsynonymous variants, including one protein truncating variant, a HOXA2 nonsense change (c.703C>T, p.Q235*). The HOXA2 variant was segregated with microtia and hearing loss in the family and was not seen in 6,500 individuals sequenced by the NHLBI Exome Sequencing Project or in 218 control individuals sequenced in this study. HOXA2 has been shown to be critical for outer and middle ear development through mouse models and has previously been associated with autosomal recessive bilateral microtia. Our data extend these conclusions and define HOXA2 haploinsufficiency as the first genetic cause for autosomal-dominant nonsyndromic microtia.


Assuntos
Anormalidades Congênitas/genética , Orelha/anormalidades , Genes Dominantes , Haploinsuficiência , Perda Auditiva/genética , Proteínas de Homeodomínio/genética , Microtia Congênita , Orelha Externa/anormalidades , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Fenótipo
13.
Circ Genom Precis Med ; 16(5): 452-461, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37767697

RESUMO

BACKGROUND: Many cardiovascular disorders propel the development of advanced heart failure that necessitates cardiac transplantation. When treatable causes are excluded, studies to define causes are often abandoned, resulting in a diagnosis of end-stage idiopathic cardiomyopathy. We studied whether DNA sequence analyses could identify unrecognized causes of end-stage nonischemic cardiomyopathy requiring heart transplantation and whether the prevalence of genetic causes differed from ambulatory cardiomyopathy cases. METHODS: We performed whole exome and genome sequencing of 122 explanted hearts from 101 adult and 21 pediatric patients with idiopathic cardiomyopathy from a single center. Data were analyzed for pathogenic/likely pathogenic variants in nuclear and mitochondrial genomes and assessed for nonhuman microbial sequences. The frequency of damaging genetic variants was compared among cardiomyopathy cohorts with different clinical severity. RESULTS: Fifty-four samples (44.3%) had pathogenic/likely pathogenic cardiomyopathy gene variants. The frequency of pathogenic variants was similar in pediatric (42.9%) and adult (43.6%) samples, but the distribution of mutated genes differed (P=8.30×10-4). The prevalence of causal genetic variants was significantly higher in end-stage than in previously reported ambulatory adult dilated cardiomyopathy cases (P<0.001). Among remaining samples with unexplained causes, no damaging mitochondrial variants were identified, but 28 samples contained parvovirus genome sequences, including 2 samples with 6- to 9-fold higher levels than the overall mean levels in other samples. CONCLUSIONS: Pathogenic variants and viral myocarditis were identified in 45.9% of patients with unexplained end-stage cardiomyopathy. Damaging gene variants are significantly more frequent among transplant compared with patients with ambulatory cardiomyopathy. Genetic analyses can help define cause of end-stage cardiomyopathy to guide management and risk stratification of patients and family members.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Transplante de Coração , Adulto , Humanos , Criança , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/cirurgia , Cardiomiopatia Dilatada/diagnóstico , Insuficiência Cardíaca/diagnóstico
14.
BMC Med Genet ; 13: 21, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22458570

RESUMO

BACKGROUND: The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. METHODS: To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. RESULTS: Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. CONCLUSIONS: Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Animais , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Células COS , Chlorocebus aethiops , Testes Genéticos , Vetores Genéticos/genética , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
15.
Circ Res ; 106(9): 1549-52, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20378854

RESUMO

RATIONALE: The myosin-binding protein C isoform 3 (MYBPC3) variant Arg502Trp has been identified in multiple hypertrophic cardiomyopathy (HCM) cases, but compelling evidence to support or refute the pathogenicity of this variant is lacking. OBJECTIVE: To determine the prevalence, origin and clinical significance of the MYBPC3 Arg502Trp variant. METHODS AND RESULTS: The prevalence of MYBPC3 Arg502Trp was ascertained in 1414 sequential HCM patients of primarily European descent. MYBPC3 Arg502Trp was identified in 34 of these 1414 unrelated HCM patients. Segregation of MYBPC3 Arg502Trp with clinical status was assessed in family members. Disease haplotypes were examined in 17 families using two loci flanking MYBPC3. Family studies identified an additional 43 variant carriers, many with manifest disease, yielding a calculated odds ratio of 11 000:1 for segregation of MYBPC3 Arg502Trp with HCM. Analyses in 17 families showed at least 4 independent haplotypes flanked MYBPC3 Arg502Trp. Eight individuals (4 probands and 4 family members) also had another sarcomere protein gene mutation. Major adverse clinical events occurred in approximately 30% of MYBPC3 Arg502Trp carriers by age 50; these were significantly more likely (P<0.0001) when another sarcomere mutation was present. CONCLUSIONS: MYBPC3 Arg502Trp is the most common and recurrent pathogenic mutation in a diverse primarily European descent HCM cohort, occurring in 2.4% of patients. MYBPC3 Arg502Trp conveys a 340-fold increased risk for HCM by 45 years of age, when more than 50% of carriers have overt disease. HCM prognosis worsens when MYBPC3 Arg502Trp occurs in the setting of another sarcomere protein gene mutation.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação Puntual , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Adulto Jovem
16.
Science ; 377(6606): eabo1984, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926050

RESUMO

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Análise de Célula Única , Transcriptoma , Displasia Arritmogênica Ventricular Direita/genética , Atlas como Assunto , Cardiomiopatia Dilatada/genética , Núcleo Celular/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração , Humanos , RNA-Seq
17.
N Engl J Med ; 358(18): 1899-908, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18403758

RESUMO

BACKGROUND: The childhood onset of idiopathic cardiac hypertrophy that occurs without a family history of cardiomyopathy can portend a poor prognosis. Despite morphologic similarities to genetic cardiomyopathies of adulthood, the contribution of genetics to childhood-onset hypertrophy is unknown. METHODS: We assessed the family and medical histories of 84 children (63 boys and 21 girls) with idiopathic cardiac hypertrophy diagnosed before 15 years of age (mean [+/-SD] age, 6.99+/-6.12 years). We sequenced eight genes: MYH7, MYBPC3, TNNT2, TNNI3, TPM1, MYL3, MYL2, and ACTC. These genes encode sarcomere proteins that, when mutated, cause adult-onset cardiomyopathies. We also sequenced PRKAG2 and LAMP2, which encode metabolic proteins; mutations in these genes can cause early-onset ventricular hypertrophy. RESULTS: We identified mutations in 25 of 51 affected children without family histories of cardiomyopathy and in 21 of 33 affected children with familial cardiomyopathy. Among 11 of the 25 children with presumed sporadic disease, 4 carried new mutations and 7 inherited the mutations. Mutations occurred predominantly (in >75% of the children) in MYH7 and MYBPC3; significantly more MYBPC3 missense mutations were detected than occur in adult-onset cardiomyopathy (P<0.005). Neither hypertrophic severity nor contractile function correlated with familial or genetic status. Cardiac transplantation and sudden death were more prevalent among mutation-positive than among mutation-negative children; implantable cardioverter-defibrillators were more frequent (P=0.007) in children with family histories that were positive for the mutation. CONCLUSIONS: Genetic causes account for about half of presumed sporadic cases and nearly two thirds of familial cases of childhood-onset hypertrophy. Childhood-onset hypertrophy should prompt genetic analyses and family evaluations.


Assuntos
Cardiomegalia/genética , Cardiomiopatia Dilatada/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Deleção de Sequência , Adolescente , Idade de Início , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Linhagem
18.
Circ Genom Precis Med ; 14(5): e003389, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461741

RESUMO

BACKGROUND: Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS: Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS: Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS: Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Éxons , Heterozigoto , Splicing de RNA , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
N Engl J Med ; 356(8): 809-19, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17314340

RESUMO

BACKGROUND: The Björnstad syndrome, an autosomal recessive disorder associated with sensorineural hearing loss and pili torti, is caused by mutation of a previously unidentified gene on chromosome 2q34-36. METHODS: Refined genetic mapping and DNA sequencing of 44 genes between D2S2210 and D2S2244 revealed BCS1L mutations. Functional analyses elucidated how BCS1L mutations cause the Björnstad syndrome. RESULTS: BCS1L encodes a member of the AAA family of ATPases that is necessary for the assembly of complex III in the mitochondria. In addition to the Björnstad syndrome, BCS1L mutations cause complex III deficiency and the GRACILE syndrome, which in neonates are lethal conditions that have multisystem and neurologic manifestations typifying severe mitochondrial disorders. Patients with the Björnstad syndrome have mutations that alter residues involved in protein-protein interactions, whereas mutations in patients with complex III deficiency alter ATP-binding residues, as deduced from the crystal structure of a related AAA-family ATPase. Biochemical studies provided evidence to support this model: complex III deficiency mutations prevented ATP-dependent assembly of BCS1L-associated complexes. All mutant BCS1L proteins disrupted the assembly of complex III, reduced the activity of the mitochondrial electron-transport chain, and increased the production of reactive oxygen species. However, only mutations associated with complex III deficiency increased mitochondrial content, which further increased the production of reactive oxygen species. CONCLUSIONS: BCS1L mutations cause disease phenotypes ranging from highly restricted pili torti and sensorineural hearing loss (the Björnstad syndrome) to profound multisystem organ failure (complex III deficiency and the GRACILE syndrome). All BCS1L mutations disrupted the assembly of mitochondrial respirasomes (the basic unit for respiration in human mitochondria), but the clinical expression of the mutations was correlated with the production of reactive oxygen species. Mutations that cause the Björnstad syndrome illustrate the exquisite sensitivity of ear and hair tissues to mitochondrial function, particularly to the production of reactive oxygen species.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Doenças do Cabelo/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Bactérias/química , Pré-Escolar , Análise Mutacional de DNA , Complexo III da Cadeia de Transporte de Elétrons/química , Feminino , Humanos , Masculino , Mitocôndrias , Linhagem , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Síndrome , Leveduras
20.
Circ Genom Precis Med ; 13(5): 444-452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885985

RESUMO

BACKGROUND: Cardiac troponin I (TNNI3) gene mutations account for 3% of hypertrophic cardiomyopathy and carriers have a heterogeneous phenotype, with increased risk of sudden cardiac death (SCD). Only one mutation (p.Arg21Cys) has been reported in the N terminus of the protein. In model organisms, it impairs PKA (protein kinase A) phosphorylation, increases calcium sensitivity, and causes diastolic dysfunction. The phenotype of this unique mutation in patients with hypertrophic cardiomyopathy remains unknown. METHODS: We sequenced 29 families with hypertrophic cardiomyopathy enriched for pediatric-onset disease and identified 5 families with the TNNI3 p.Arg21Cys mutation. Using cascade screening, we studied the clinical phenotype of 57 individuals from the 5 families with TNNI3 p.Arg21Cys-related cardiomyopathy. We performed survival analysis investigating the age at first SCD in carriers of the mutation. RESULTS: All 5 families with TNNI3 p.Arg21Cys were from South Lebanon. TNNI3 p.Arg21Cys-related cardiomyopathy manifested a malignant phenotype-SCD occurred in 30 (53%) of 57 affected individuals at a median age of 22.5 years. In select carriers without left ventricular hypertrophy on echocardiogram, SCD occurred, myocyte disarray was found on autopsy heart, and tissue Doppler and cardiac magnetic resonance imaging identified subclinical disease features such as diastolic dysfunction and late gadolinium enhancement. CONCLUSIONS: The TNNI3 p.Arg21Cys mutation has a founder effect in South Lebanon and causes malignant hypertrophic cardiomyopathy with early SCD even in the absence of hypertrophy. Genetic diagnosis with this mutation may be sufficient for risk stratification for SCD.


Assuntos
Cardiomiopatia Hipertrófica/genética , Troponina I/genética , Adolescente , Adulto , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Morte Súbita Cardíaca/etiologia , Ecocardiografia , Feminino , Efeito Fundador , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Linhagem , Fenótipo , Domínios Proteicos/genética , Troponina I/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA