Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hum Mol Genet ; 29(21): 3477-3492, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075805

RESUMO

Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.


Assuntos
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Alelos , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Integrases/genética , Camundongos , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
2.
Hum Mol Genet ; 29(21): 3493-3503, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084884

RESUMO

Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.


Assuntos
Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Alelos , Aminoácidos/genética , Animais , Modelos Animais de Doenças , Éxons/genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Multimerização Proteica/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética
3.
Neurobiol Dis ; 159: 105488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425216

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doenças Assintomáticas , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Atrofias Musculares Espinais da Infância/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Morfolinos/farmacologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445199

RESUMO

Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.


Assuntos
Atrofia Muscular Espinal/genética , Animais , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação , Transdução de Sinais , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
5.
Hum Mol Genet ; 27(19): 3404-3416, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982416

RESUMO

Spinal muscular atrophy (SMA) is caused by reduced levels of full-length SMN (FL-SMN). In SMA patients with one or two copies of the Survival Motor Neuron 2 (SMN2) gene there are a number of SMN missense mutations that result in milder-than-predicted SMA phenotypes. These mild SMN missense mutation alleles are often assumed to have partial function. However, it is important to consider the contribution of FL-SMN as these missense alleles never occur in the absence of SMN2. We propose that these patients contain a partially functional oligomeric SMN complex consisting of FL-SMN from SMN2 and mutant SMN protein produced from the missense allele. Here we show that mild SMN missense mutations SMND44V, SMNT74I or SMNQ282A alone do not rescue mice lacking wild-type FL-SMN. Thus, missense mutations are not functional in the absence of FL-SMN. In contrast, when the same mild SMN missense mutations are expressed in a mouse containing two SMN2 copies, functional SMN complexes are formed with the small amount of wild-type FL-SMN produced by SMN2 and the SMA phenotype is completely rescued. This contrasts with SMN missense alleles when studied in C. elegans, Drosophila and zebrafish. Here we demonstrate that the heteromeric SMN complex formed with FL-SMN is functional and sufficient to rescue small nuclear ribonucleoprotein assembly, motor neuron function and rescue the SMA mice. We conclude that mild SMN missense alleles are not partially functional but rather they are completely non-functional in the absence of wild-type SMN in mammals.


Assuntos
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética , Alelos , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Modelos Animais de Doenças , Drosophila melanogaster/genética , Éxons/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas do Complexo SMN/química , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Peixe-Zebra/genética
6.
Hum Genet ; 138(3): 241-256, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30788592

RESUMO

Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.


Assuntos
Deleção de Genes , Estudos de Associação Genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Fenótipo , Sequência de Bases , Biologia Computacional , Dosagem de Genes , Frequência do Gene , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
7.
Ann Neurol ; 82(6): 883-891, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29149772

RESUMO

OBJECTIVE: Infantile-onset spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality, typically resulting in death preceding age 2. Clinical trials in this population require an understanding of disease progression and identification of meaningful biomarkers to hasten therapeutic development and predict outcomes. METHODS: A longitudinal, multicenter, prospective natural history study enrolled 26 SMA infants and 27 control infants aged <6 months. Recruitment occurred at 14 centers over 21 months within the NINDS-sponsored NeuroNEXT (National Network for Excellence in Neuroscience Clinical Trials) Network. Infant motor function scales (Test of Infant Motor Performance Screening Items [TIMPSI], The Children's Hospital of Philadelphia Infant Test for Neuromuscular Disorders, and Alberta Infant Motor Score) and putative physiological and molecular biomarkers were assessed preceding age 6 months and at 6, 9, 12, 18, and 24 months with progression, correlations between motor function and biomarkers, and hazard ratios analyzed. RESULTS: Motor function scores (MFS) and compound muscle action potential (CMAP) decreased rapidly in SMA infants, whereas MFS in all healthy infants rapidly increased. Correlations were identified between TIMPSI and CMAP in SMA infants. TIMPSI at first study visit was associated with risk of combined endpoint of death or permanent invasive ventilation in SMA infants. Post-hoc analysis of survival to combined endpoint in SMA infants with 2 copies of SMN2 indicated a median age of 8 months at death (95% confidence interval, 6, 17). INTERPRETATION: These data of SMA and control outcome measures delineates meaningful change in clinical trials in infantile-onset SMA. The power and utility of NeuroNEXT to provide "real-world," prospective natural history data sets to accelerate public and private drug development programs for rare disease is demonstrated. Ann Neurol 2017;82:883-891.


Assuntos
Atrofias Musculares Espinais da Infância/sangue , Atrofias Musculares Espinais da Infância/diagnóstico , Biomarcadores/sangue , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Estudos Prospectivos , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor/sangue , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/sangue , Proteína 2 de Sobrevivência do Neurônio Motor/genética
8.
Genes Dev ; 24(15): 1574-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20679391

RESUMO

Antisense oligonucleotides (ASOs) can be used to alter the splicing of a gene and either restore production of a required protein or eliminate a toxic product. In this issue of Genes & Development, Hua and colleagues (pp. 1634-1644) show that ASOs directed against an intron splice silencer (ISS) in the survival motor neuron 2 (SMN2) gene alter the amount of full-length SMN transcript in the nervous system, restoring SMN to levels that could correct spinal muscular atrophy (SMA).


Assuntos
Atrofia Muscular Espinal/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Modelos Animais de Doenças , Humanos , Íntrons , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética
9.
Hum Mol Genet ; 24(19): 5524-41, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26206889

RESUMO

Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.


Assuntos
Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Potenciais de Ação , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Deleção de Sequência
10.
Hum Mol Genet ; 24(21): 6160-73, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26276812

RESUMO

Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).


Assuntos
Músculos/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Marcadores Genéticos , Masculino , Camundongos , Contração Muscular , Músculos/fisiologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
11.
Hum Mol Genet ; 24(13): 3847-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25859009

RESUMO

The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High-frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/metabolismo , Trato Gastrointestinal/inervação , Atrofia Muscular Espinal/complicações , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/deficiência , Animais , Modelos Animais de Doenças , Feminino , Esvaziamento Gástrico , Gastroenteropatias/etiologia , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
12.
Muscle Nerve ; 56(2): 341-345, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27875632

RESUMO

INTRODUCTION: Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. METHODS: Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. RESULTS: A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. CONCLUSION: Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017.


Assuntos
Saúde da Família , Neuropatia Hereditária Motora e Sensorial/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Potenciais de Ação/genética , Adulto , Feminino , Ligação Genética , Genótipo , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , América do Norte/epidemiologia , Fenótipo
13.
Neurobiol Dis ; 87: 116-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733414

RESUMO

BACKGROUND: Significant advances in the development of SMN-restoring therapeutics have occurred since 2010 when very effective biological treatments were reported in mouse models of spinal muscular atrophy. As these treatments are applied in human clinical trials, there is pressing need to define quantitative assessments of disease progression, treatment stratification, and therapeutic efficacy. The electrophysiological measures Compound Muscle Action Potential and Motor Unit Number Estimation are reliable measures of nerve function. In both the SMN∆7 mouse and a pig model of spinal muscular atrophy, early SMN restoration results in preservation of electrophysiological measures. Currently, clinical trials are underway in patients at post-symptomatic stages of disease progression. In this study, we present results from both early and delayed SMN restoration using clinically-relevant measures including electrical impedance myography, compound muscle action potential, and motor unit number estimation to quantify the efficacy and time-sensitivity of SMN-restoring therapy. METHODS: SMA∆7 mice were treated via intracerebroventricular injection with antisense oligonucleotides targeting ISS-N1 to increase SMN protein from the SMN2 gene on postnatal day 2, 4, or 6 and compared with sham-treated spinal muscular atrophy and control mice. Compound muscle action potential and motor unit number estimation of the triceps surae muscles were performed at day 12, 21, and 30 by a single evaluator blinded to genotype and treatment. Similarly, electrical impedance myography was measured on the biceps femoris muscle at 12days for comparison. RESULTS: Electrophysiological measures and electrical impedance myography detected significant differences at 12days between control and late-treated (4 or 6days) and sham-treated spinal muscular atrophy mice, but not in mice treated at 2days (p<0.01). EIM findings paralleled and correlated with compound muscle action potential and motor unit number estimation (r=0.61 and r=0.50, respectively, p<0.01). Longitudinal measures at 21 and 30days show that symptomatic therapy results in reduced motor unit number estimation associated with delayed normalization of compound muscle action potential. CONCLUSIONS: The incomplete effect of symptomatic treatment is accurately identified by both electrophysiological measures and electrical impedance myography. There is strong correlation between these measures and with weight and righting reflex. This study predicts that measures of compound muscle action potential, motor unit number estimation, and electrical impedance myography are promising biomarkers of treatment stratification and effect for future spinal muscular atrophy trials. The ease of application and simplicity of electrical impedance myography compared with standard electrophysiological measures may be particularly valuable in future pediatric clinical trials.


Assuntos
Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/terapia , Animais , Animais Recém-Nascidos , Atrofia , Modelos Animais de Doenças , Impedância Elétrica , Terapia Genética/métodos , Estudos Longitudinais , Camundongos Transgênicos , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/patologia , Miografia , Oligonucleotídeos Antissenso/administração & dosagem , Reflexo/fisiologia , Análise de Sobrevida
14.
Hum Mol Genet ; 21(7): 1625-38, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22186025

RESUMO

Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.


Assuntos
Morfolinos/administração & dosagem , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Injeções , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Splicing de RNA , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/genética
15.
Hum Mol Genet ; 20(18): 3578-91, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21672919

RESUMO

Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron 1 gene (SMN1) and retention of the SMN2 gene, resulting in reduced SMN. SMA mice can be rescued with high expression of SMN in neurons, but when is this high expression required? We have developed a SMA mouse with inducible expression of SMN to address the temporal requirement for high SMN expression. Both embryonic and early postnatal induction of SMN resulted in a dramatic increase in survival with some mice living greater than 200 days. The mice had no marked motor deficits and neuromuscular junction (NMJ) function was near normal thus it appears that induction of SMN in postnatal SMA mice rescues motor function. Early postnatal SMN induction, followed by a 1-month removal of induction at 28 days of age, resulted in no morphological or electrophysiological abnormalities at the NMJ and no overt motor phenotype. Upon removal of SMN induction, five mice survived for just over 1 month and two female mice have survived past 8 months of age. We suggest that there is a postnatal period of time when high SMN levels are required. Furthermore, two copies of SMN2 provide the minimal amount of SMN necessary to maintain survival during adulthood. Finally, in the course of SMA, early induction of SMN is most efficacious.


Assuntos
Expressão Gênica , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Atrofia Muscular Espinal/embriologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
16.
Hum Mol Genet ; 19(20): 3895-905, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20639395

RESUMO

Proximal spinal muscular atrophy (SMA) is a debilitating neurological disease marked by isolated lower motor neuron death and subsequent atrophy of skeletal muscle. Historically, SMA pathology was thought to be limited to lower motor neurons and the skeletal muscles they control, yet there are several reports describing the coincidence of cardiovascular abnormalities in SMA patients. As new therapies for SMA emerge, it is necessary to determine whether these non-neuromuscular systems need to be targeted. Therefore, we have characterized left ventricular (LV) function of SMA mice (SMN2+/+; SMNΔ7+/+; Smn-/-) and compared it with that of their unaffected littermates at 7 and 14 days of age. Anatomical and physiological measurements made by electrocardiogram and echocardiography show that affected mouse pups have a dramatic decrease in cardiac function. At 14 days of age, SMA mice have bradycardia and develop a marked dilated cardiomyopathy with a concomitant decrease in contractility. Signs of decreased cardiac function are also apparent as early as 7 days of age in SMA animals. Delivery of a survival motor neuron-1 transgene using a self-complementary adeno-associated virus serotype 9 abolished the symptom of bradycardia and significantly decreased the severity of the heart defect. We conclude that severe SMA animals have compromised cardiac function resulting at least partially from early bradycardia, which is likely attributable to aberrant autonomic signaling. Further cardiographic studies of human SMA patients are needed to clarify the clinical relevance of these findings from this SMA mouse.


Assuntos
Bradicardia , Dependovirus/genética , Técnicas de Transferência de Genes , Insuficiência Cardíaca/fisiopatologia , Atrofia Muscular Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Bradicardia/genética , Bradicardia/fisiopatologia , Bradicardia/terapia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Eletrocardiografia , Terapia Genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/complicações , Contração Miocárdica , Proteínas do Tecido Nervoso , Proteínas do Complexo SMN , Função Ventricular Esquerda
18.
Nat Med ; 27(10): 1701-1711, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34608334

RESUMO

Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.


Assuntos
Produtos Biológicos/efeitos adversos , Terapia Genética/efeitos adversos , Proteínas Recombinantes de Fusão/efeitos adversos , Atrofias Musculares Espinais da Infância/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Autopsia , Produtos Biológicos/administração & dosagem , DNA/genética , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/mortalidade , Atrofias Musculares Espinais da Infância/patologia , Distribuição Tecidual/efeitos dos fármacos
19.
Hum Mol Genet ; 17(18): 2900-9, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18603534

RESUMO

Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein. Previously, cultured SMA motor neurons showed reduced growth cone size and axonal length. Furthermore, reduction of SMN in zebrafish resulted in truncation followed by branching of motor neuron axons. In this study, motor neurons labeled with green fluorescent protein (GFP) were examined in SMA mice from embryonic day 10.5 to postnatal day 2. SMA motor axons showed no defect in axonal formation or outgrowth at any stage of development. However, a significant increase in synapses lacking motor axon input was detected in embryonic SMA mice. Therefore, one of the earliest detectable morphological defects in the SMA mice is the loss of synapse occupation by motor axons. This indicates that in severe SMA mice there are no defects in motor axon formation however, we find evidence of denervation in embryogenesis.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Atrofia Muscular Espinal/embriologia , Junção Neuromuscular/crescimento & desenvolvimento , Medula Espinal/crescimento & desenvolvimento , Animais , Axônios/química , Axônios/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/química , Neurônios Motores/citologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/embriologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN , Medula Espinal/embriologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor
20.
Hum Mol Genet ; 17(8): 1063-75, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18178576

RESUMO

Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth. Here we show that expression of full-length SMN under the prion promoter (PrP) rescues severe SMA mice. The PrP results in high levels of SMN in neurons at embryonic day 15. Mice homozygous for PrP-SMN with two copies of SMN2 and lacking mouse Smn survive for an average of 210 days and lumbar motor neuron root counts in these mice were normal. Expression of SMN solely in skeletal muscle using the human skeletal actin (HSA) promoter resulted in no improvement of the SMA phenotype or extension of survival. One HSA line displaying nerve expression of SMN did affect the SMA phenotype with mice living for an average of 160 days. Thus, we conclude that expression of full-length SMN in neurons can correct the severe SMA phenotype in mice. Furthermore, a small increase of SMN in neurons has a substantial impact on survival of SMA mice while high SMN levels in mature skeletal muscle alone has no impact.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Embrião de Mamíferos/metabolismo , Dosagem de Genes , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Neurônios , Regiões Promotoras Genéticas , Proteínas do Complexo SMN , Análise de Sobrevida , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA