Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Genomics ; 43(18): 1056-64, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21750231

RESUMO

Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.


Assuntos
Animais Selvagens/genética , Aquicultura , Proteínas de Peixes/genética , Peixes/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Ribossomos/genética , Animais , Regiões Árticas , Biomarcadores/metabolismo , Tamanho Corporal/genética , Peso Corporal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Temperatura
2.
Physiol Genomics ; 43(11): 685-96, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21467159

RESUMO

Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids and is bred and grown at inland freshwater tank farms year round. It is of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change and to enable production in more southern regions. We used a genomics approach that takes advantage of the well-studied Atlantic salmon genome to identify genes that are associated with UTT in Arctic charr. Specifically, we conducted an acute temperature trial to identify temperature tolerant and intolerant Arctic charr individuals, which were subject to microarray and qPCR analysis to identify candidate UTT genes. These were compared with genes annotated in a quantitative trait locus (QTL) region that was previously identified as associated with UTT in rainbow trout and Arctic charr and that we sequenced in Atlantic salmon. Our results suggest that small heat shock proteins as well as HSP-90 genes are associated with UTT. Furthermore, hemoglobin expression was significantly downregulated in tolerant compared with intolerant fish. Finally, QTL analysis and expression profiling identified COUP-TFII as a candidate UTT gene, although its specific role is unclear given the identification of two transcripts, which appear to have different expression patterns. Our results highlight the importance of using more than one approach to identify candidate genes, particularly when examining a complicated trait such as UTT in a highly complex genome for which there is no reference genome.


Assuntos
Proteínas de Peixes/genética , Genoma , Temperatura Alta , Truta/genética , Animais , Regiões Árticas , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genômica , Hemoglobinas/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Estresse Fisiológico/genética , Truta/fisiologia
3.
BMC Genomics ; 9: 545, 2008 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19014685

RESUMO

BACKGROUND: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. RESULTS: 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. CONCLUSION: An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94-96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is consistent with an ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, provide valuable new tools to study salmonids.


Assuntos
Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Duplicação Gênica , Filogenia , Salmonidae/genética , Animais , Mapeamento de Sequências Contíguas , Evolução Molecular , Perfilação da Expressão Gênica , Genoma , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA