RESUMO
This work evaluates quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parameters as early biomarkers of response in a preclinical model of triple negative breast cancer (TNBC). The standard Tofts' model of DCE-MRI returns estimates of the volume transfer constant (Ktrans ) and the extravascular extracellular volume fraction (ve ). DW-MRI returns estimates of the apparent diffusion coefficient (ADC). Mice (n = 38) were injected subcutaneously with MDA-MB-231. Tumors were grown to approximately 275 mm3 and sorted into the following groups: saline controls, low-dose Abraxane (15 mg/kg) and high-dose Abraxane (25 mg/kg). Animals were imaged at days zero, one and three. On day three, tumors were extracted for immunohistochemistry. The positive percentage change in ADC on day one was significantly higher in both treatment groups relative to the control group (p < 0.05). In addition, the positive percentage change in Ktrans was significantly higher than controls (p < 0.05) on day one for the high-dose group and on days one and three for the low-dose group. The percentage change in tumor volume was significantly different between the high-dose and control groups on day three (p = 0.006). Histology confirmed differences at day three through reduced numbers of proliferating cells (Ki67 staining) in the high-dose group (p = 0.03) and low-dose group (p = 0.052) compared with the control group. Co-immunofluorescent staining of vascular maturity [using von Willebrand Factor (vWF) and α-smooth muscle actin (α-SMA)] indicated significantly higher vascular maturation in the low-dose group compared with the controls on day three (p = 0.03), and trending towards significance in the high-dose group compared with controls on day three (p = 0.052). These results from quantitative imaging with histological validation indicate that ADC and Ktrans have the potential to serve as early biomarkers of treatment response in murine studies of TNBC.
Assuntos
Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Animais , Biomarcadores , Feminino , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga TumoralRESUMO
To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter K (trans) ) and the extravascular extracellular volume fraction (v e ) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in K (trans) (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in v e (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging method, following treatment with trastuzumab may provide an opportunity to optimize the scheduling and improve delivery of subsequent cytotoxic therapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Quimioterapia Combinada/métodos , Feminino , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
PURPOSE: To investigate the influence of cell membrane permeability on diffusion measurements over a broad range of diffusion times. METHODS: Human myelogenous leukemia K562 cells were cultured and treated with saponin to selectively alter cell membrane permeability, resulting in a broad physiologically relevant range of 0.011-0.044 µm/ms. Apparent diffusion coefficient (ADC) values were acquired with the effective diffusion time (Δeff ) ranging from 0.42 to 3000 ms. Cosine-modulated oscillating gradient spin echo (OGSE) measurements were performed to achieve short Δeff from 0.42 to 5 ms, while stimulated echo acquisitions were used to achieve long Δeff from 11 to 2999 ms. Computer simulations were also performed to support the experimental results. RESULTS: Both computer simulations and experiments in vitro showed that the influence of membrane permeability on diffusion MR measurements is highly dependent on the choice of diffusion time, and it is negligible only when the diffusion time is at least one order of magnitude smaller than the intracellular exchange lifetime. CONCLUSION: The influence of cell membrane permeability on the measured ADCs is negligible in OGSE measurements at moderately high frequencies. By contrast, cell membrane permeability has a significant influence on ADC and quantitative diffusion measurements at low frequencies such as those sampled using conventional pulsed gradient methods.
Assuntos
Permeabilidade da Membrana Celular , Imagem de Difusão por Ressonância Magnética , Algoritmos , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Células K562 , Modelos Lineares , Oscilometria , Permeabilidade , Saponinas/química , Processamento de Sinais Assistido por Computador , Água/químicaRESUMO
Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease.
Assuntos
Aneurisma da Aorta Abdominal/patologia , Metaloproteases/análise , Microscopia de Fluorescência/métodos , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , CamundongosRESUMO
BACKGROUND: It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS: We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS: Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION: Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Masculino , Animais , Camundongos , Preparações Farmacêuticas , Fluordesoxiglucose F18 , Imunoterapia , Alcanossulfonatos , Glucose , Hidroxiapatitas , Microambiente TumoralRESUMO
Chemotherapeutics such as doxorubicin (DOX) and paclitaxel (PXL) have dose-limiting systemic toxicities, including cardiotoxicity and peripheral neuropathy. Delivery strategies to minimize these undesirable effects are needed and could improve efficacy, while reducing patient morbidity. Here, DOX and PXL were conjugated to a nanodendron (ND) through an MMP9-cleavable peptide linker, producing two new therapies, ND2(DOX) and ND2(PXL), designed to improve delivery specificity to the tumor microenvironment and reduce systemic toxicity. Comparative cytotoxicity assays were performed between intact ND-drug conjugates and the MMP9 released drug in cell lines with and without MMP9 expression. While ND2(DOX) was found to lose cytotoxicity due to the modification of DOX for conjugation to the ND; ND2(PXL) was determined to have the desired properties for a prodrug delivery system. ND2(PXL) was found to be cytotoxic in MMP9-expressing mouse mammary carcinoma (R221A-luc) (53%) and human breast carcinoma (MDA-MB-231) (66%) at a concentration of 50 nM (in PXL) after 48 h. Treating ND2(PXL) with MMP9 prior to the cytotoxicity assay resulted in a faster response; however, both cleaved and intact versions of the drug reached the same efficacy as the unmodified drug by 96 h in the R221A-luc and MDA-MB-231 cell lines. Further studies in modified Lewis lung carcinoma cells that either do (LLC(MMP9)) or do not (LLC(RSV)) express MMP9 demonstrate the selectivity of ND2(PXL) for MMP9. LLC(MMP9) cells were only 20% viable after 48 h of treatment, while LLC(RSV) were not affected. Inclusion of an MMP inhibitor, GM6001, when treating the LLC(MMP9) cells with ND2(PXL) eliminated the response of the MMP9 expressing cells (LLC(MMP9)). The data presented here suggests that these NDs, specifically ND2(PXL), are nontoxic until activated by MMP9, a protease common in the microenvironment of tumors, indicating that incorporation of chemotherapeutic or cytostatic agents onto the ND platform have potential for tumor-targeted efficacy with reduced in vivo systemic toxicities.
Assuntos
Sistemas de Liberação de Medicamentos , Metaloproteinase 9 da Matriz/metabolismo , Animais , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Paclitaxel/administração & dosagem , Pró-Fármacos/administração & dosagem , RatosRESUMO
Cyclooxygenase-2 (COX-2) expression is up-regulated in inflammatory tissues and many premalignant and malignant tumors. Assessment of COX-2 protein in vivo, therefore, promises to be a powerful strategy to distinguish pathologic cells from normal cells in a complex disease setting. Herein, we report the first redox-activatable COX-2 probe, fluorocoxib Q (FQ), for in vivo molecular imaging of pathogenesis. FQ inhibits COX-2 selectively in purified enzyme and cell-based assays. FQ exhibits extremely low fluorescence and displays time- and concentration-dependent fluorescence enhancement upon exposure to a redox environment. FQ enters the cells freely and binds to the COX-2 enzyme. FQ exhibits high circulation half-life and metabolic stability sufficient for target site accumulation and demonstrates COX-2-targeted uptake and retention in cancer cells and pathologic tissues. Once taken up, it undergoes redox-mediated transformation into a fluorescent compound fluorocoxib Q-H that results in high signal-to-noise contrast and differentiates pathologic tissues from non-pathologic tissues for real-time in vivo imaging.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Neoplasias , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Corantes Fluorescentes/química , OxirreduçãoRESUMO
BACKGROUND: Bronchial epithelial damage and activation likely contribute to the inflammatory and airway-remodeling events characteristic of severe asthma. Interaction of Fas receptor (CD95) with its ligand (FasL; CD95L) is an important mechanism of cell-mediated apoptosis. Bronchial epithelial FasL expression provides immune barrier protection from immune cell-mediated damage. OBJECTIVES: Membrane FasL (mFasL) is a cleavage target of matrix metalloproteinases (MMPs). We investigated whether the asthmatic T(H)2 environment might influence disease processes by increasing airway epithelial MMP-mediated cleavage of mFasL into proinflammatory soluble FasL. METHODS: We used human airway epithelial cell lines and primary cells to model the human airway epithelium in vitro. Airway tissue from healthy subjects and patients with severe asthma was used to investigate MMP expression patterns in diseased airways. RESULTS: We demonstrate that active MMP-7 is present in the ciliated epithelial cells of normal human airways. In patients with severe asthma, MMP-7 levels are increased in basal epithelial cells. Airway epithelial cell lines (1HAEo(-) and 16HBE14o(-)) in vitro express constitutively high levels of MMP-2 and MMP-9 but relatively low levels of MMP-7. T(H)2 cytokine (IL-4, IL-9, and IL-13) treatment of 1HAEo(-) cells increased MMP-7 mRNA and activity, triggered colocalization of intracellular MMP-7 with FasL, and caused mFasL cleavage with soluble FasL release. Small interfering RNA knockdown shows that cytokine-induced mFasL cleavage is dependent on MMP-7 activity. CONCLUSIONS: MMPs serve multiple beneficial roles in the lung. However, chronic disordered epithelial expression of MMP-7 in patients with asthma might increase mFasL cleavage and contribute to airway epithelial damage and inflammation.
Assuntos
Asma/imunologia , Brônquios/imunologia , Células Epiteliais/imunologia , Proteína Ligante Fas/imunologia , Interleucina-13/farmacologia , Metaloproteinase 7 da Matriz/imunologia , Mucosa Respiratória/imunologia , Células Th2/imunologia , Asma/genética , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Interleucina-9/genética , Interleucina-9/imunologia , Interleucina-9/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Modelos Biológicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Células Th2/metabolismo , Células Th2/patologia , Receptor fas/genética , Receptor fas/imunologia , Receptor fas/metabolismoRESUMO
Clinical imaging approaches to detect inflammatory biomarkers, such as cyclooxygenase-2 (COX-2), may facilitate the diagnosis and therapy of inflammatory diseases. To this end, we report the discovery of N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide chloride salt (fluorocoxib D), a hydrophilic analog of fluorocoxib A. Fluorocoxib D inhibits COX-2 selectively in purified enzyme preparations and cells. It exhibits adequate photophysical properties to enable detection of COX-2 in intact cells, in a mouse model of carrageenan-induced acute footpad inflammation and inflammation in a mouse model of osteoarthritis. COX-2-selectivity was verified either by blocking the enzyme's active site with celecoxib or by molecular imaging with nontargeted 5-carboxy-X-rhodamine dye. These data indicate that fluorocoxib D is an ideal candidate for early detection of inflammatory or neoplastic lesions expressing elevated levels of COX-2.
RESUMO
The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There are both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for noninvasive "molecular imaging" of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: (1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of proteolytic activity, (2) diagnosis and prognosis to distinguished tumors that require particularly aggressive therapy or those that will not benefit from therapy, (3) identification of tumors appropriate for specific antiproteinase therapeutics and optimization of drug and dose based on determination of target modulation, and (4) as an indicator of efficacy of proteolytically activated prodrugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP-referable proteolytic activity in tumors in mouse models of cancer.
Assuntos
Corantes Fluorescentes/análise , Metaloproteinases da Matriz/metabolismo , Neoplasias/enzimologia , Peptídeos/análise , Poliaminas/análise , Animais , Dendrímeros , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Camundongos , Neoplasias/diagnóstico , Neoplasias/ultraestrutura , Neoplasias Experimentais/enzimologia , Peptídeos/síntese química , Peptídeos/metabolismo , Poliaminas/síntese química , Poliaminas/metabolismo , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho , Transplante Heterólogo , Imagem Corporal TotalRESUMO
Dark lumen MRI colonography detects colonic polyps by minimization of the intestinal lumen signal intensity. Here we validate the use of perfluorinated oil as an intestinal-filling agent for dark lumen MRI studies in mice, enabling the physiological characterization of colonic polyps by dynamic contrast-enhanced MRI. In control and Min (multiple intestinal neoplasia) mice with and without pretreatment with oral dextran sodium sulfate (DSS), polyps as small as 0.94 mm diameter were consistently identified using standard 2D gradient echo imaging (voxel size, 0.23 x 0.16 x 0.5 mm). In serial studies, polyp growth rates were heterogeneous with an average approximately 5% increase in polyp volume per day. In DSS-treated control mice the colon wall contrast agent extravasation rate constant, K(trans), and extravascular extracellular space volume fraction, v(e), values were measured for the first time and found to be 0.10 +/- 0.03 min(-1) and 0.23 +/- 0.09, respectively. In DSS-treated Min mice, polyp K(trans) values (0.09 +/- 0.04 min(-1)) were similar to those in the colon wall but the v(e) values were substantially lower (0.16 +/- 0.03), suggesting increased cellular density. The functional dark-lumen colonography approach described herein provides new opportunities for the noninvasive assessment of gastrointestinal disease pathology and treatment response in mouse models.
Assuntos
Colonoscopia/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Pólipos do Colo/patologia , Meios de Contraste/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
A novel MRI proteinase-modulated contrast agent (PCA) was developed to detect the activity of the proinvasive enzyme matrix metalloproteinase-2 (MMP-2) in vivo. The PCA2-switch agent incorporates a solubility switch, where cleavage of a peptide substrate by MMP-2 decreases the water solubility of the agent. Evidence suggests that this leads to an accumulation of cleaved PCA2-switch in an MMP-2-positive, wild-type, MC7-L1 mammary carcinoma tumor in a Balb/c mouse model compared to a MC7-L1 MMP-2-knockdown tumor. When a scrambled peptide sequence is inserted into the agent (PCA2-scrambled), the in vitro cleavage efficiency of MMP-2 is markedly reduced. In vivo, PCA2-scrambled does not accumulate in the wild-type tumor and the pharmacokinetics is similar in both tumors. In conclusion, in vivo cleavage of PCA2-switch by MMP-2 results in a significant accumulation of the cleaved PCA2-switch in an MMP-2-positive tumor.
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Peptídeo Hidrolases/farmacocinética , Animais , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Ativação Enzimática , Camundongos , Camundongos Endogâmicos BALB CRESUMO
OBJECTIVE: The objective of this study was to design a method to identify patients at risk for preterm premature rupture of the membranes using a simple assay of salivary proteinase activity. STUDY DESIGN: Saliva samples were collected from women in the following groups using Salivette: (1) nonpregnant control; (2) during the second trimester of pregnancy; (3) during active labor at term; (4) women with premature rupture of the membranes before preterm delivery; and (5) postpartum (within 3 hours after delivery at term). Total proteolytic activity in saliva samples was measured by fluorometry using the generic substrate DQ-gelatin in the presence of specific inhibitors to selectively detect matrix metalloproteinase activities. The concentrations of various matrix metalloproteinases in saliva samples were also measured by multiplex bead assay using the Luminex platform. RESULTS: All saliva samples exhibited detectable matrix metalloproteinase activity. Salivary matrix metalloproteinase activity is low in nonpregnant females (0.27 +/- 0.15) and increases in samples taken in the second trimester (0.5 +/- 0.5) and at term during active labor (1.03 +/- 1.2). Samples collected from women with premature rupture of the membranes before preterm delivery had the highest activity (2.5 +/- 3.7) followed by postpartum after normal term delivery (2.1 +/- 1.6). The matrix metalloproteinase activity was higher in premature rupture of the membranes before preterm delivery samples, compared with all other stages of pregnancy. Multiplex matrix metalloproteinase assay documented a significant increase in total matrix metalloproteinase-9 concentration in saliva from premature rupture of the membranes before preterm delivery, compared with any of the other groups. Similarly matrix metalloproteinase-9 activity was also significantly increased in premature rupture of the membranes before preterm delivery group, compared with all others. CONCLUSION: Herein we report a simple test to monitor proteolytic enzyme activity in saliva during pregnancy. The highest matrix metalloproteinase activity is seen in premature rupture of the membranes before preterm delivery and postpartum samples. Ongoing studies aim to further define salivary proteinase activity in patients at high risk for premature rupture of the membranes before preterm delivery and to evaluate its potential as a predictive test for premature rupture of the membranes before preterm delivery.
Assuntos
Ruptura Prematura de Membranas Fetais/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Saliva/enzimologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Trabalho de Parto Prematuro/enzimologia , Gravidez , Segundo Trimestre da GravidezRESUMO
Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated Assuntos
Neovascularização de Coroide/diagnóstico por imagem
, Ciclo-Oxigenase 2/análise
, Indóis/química
, Imagem Óptica/métodos
, Rodaminas/química
, Animais
, Neovascularização de Coroide/metabolismo
, Ciclo-Oxigenase 2/metabolismo
, Estudos de Viabilidade
, Processamento de Imagem Assistida por Computador
, Indóis/análise
, Camundongos
, Rodaminas/análise
RESUMO
As molecularly targeted agents reach the clinic, there is a need for assays to detect their presence and effectiveness against target molecules in vivo. Proteinase inhibitors are one example of a class of therapeutic agent for which satisfactory methods of identifying successful target modulation in vivo are lacking. This is of particular importance while these drugs are in clinical trials because standard maximum-tolerated dose-finding studies often are not suitable due to lack of toxicity. Saliva represents a readily accessible bodily fluid that can be repeatedly sampled and used for assaying in vivo effects of systemic drugs. Here we show the development of a simple assay that can be used to measure proteinase activity in saliva and proteinase inhibition after systemic treatment with three different proteinase inhibitors. A variety of gelatinolytic activities present in human and murine saliva have been assayed with a fluorescent dye-labeled substrate and assigned to different proteinase categories by inclusion of specific classes of inhibitors. Treatment of mice with either matrix metalloproteinase inhibitors or a urokinase inhibitor for a period as short as 48 hours results in levels of the drugs that can be detected in saliva by mass spectrometry and concomitant decreases in salivary proteinase activity, thus demonstrating that these inhibitors successfully modulate their targets in vivo.
Assuntos
Biomarcadores/metabolismo , Endopeptidases/metabolismo , Fenilalanina/análogos & derivados , Inibidores de Proteases/farmacologia , Saliva/efeitos dos fármacos , Saliva/enzimologia , Amidinas/farmacologia , Amilases/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Cromatografia Líquida , Feminino , Humanos , Imidazóis , Masculino , Espectrometria de Massas , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/farmacologia , Camundongos , Compostos Orgânicos/farmacologia , Fenilalanina/farmacologia , Tiofenos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidoresRESUMO
The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7-positive tumour by approx. 60%. Thus PB-M7VIS functions as a PB for in vivo detection of MMP-7 activity that serves to light this optical beacon and is, therefore, a selective in vivo optical molecular imaging contrast reagent.
Assuntos
Metaloproteinase 7 da Matriz/metabolismo , Neoplasias Cutâneas/enzimologia , Sequência de Aminoácidos , Animais , Calibragem , Dendrímeros , Fluoresceína/síntese química , Fluoresceína/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Interpretação de Imagem Assistida por Computador , Metaloproteinase 7 da Matriz/síntese química , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Proteínas de Neoplasias/síntese química , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Peptídeos/química , Peptídeos/metabolismo , Poliaminas/síntese química , Poliaminas/metabolismo , Especificidade por Substrato , Transplante HeterólogoRESUMO
PURPOSE: The objective of this study was to evaluate 3'-deoxy-3'-[(18) F]fluorothymidine ([(18) F]FLT) positron emission tomography (PET) as an early marker of trastuzumab response in HER2-overexpressing xenografts. PROCEDURES: Tumor-to-muscle ratios were compared between both trastuzumab-sensitive and trastuzumab-resistant cohorts prior to and after one and two treatments. RESULTS: A significant difference (P = 0.03) was observed between treated and control trastuzumab-sensitive xenografts after one treatment, which preceded between-group differences in tumor volume. Reduced Ki67 (P = 0.02) and thymidine kinase 1 (TK1) (P = 0.35) immunoreactivity was observed in the treated xenografts. No significant differences in volume, tumor-to-muscle ratio, or immunoreactivity were observed between treated and control trastuzumab-resistant cohorts. A significant difference (P = 0.02) in tumor-to-muscle ratio was observed between trastuzumab-sensitive and trastuzumab-resistant cohorts after two treatments; however, tumor volumes were also different (P = 0.04). Ki67 (P = 0.04) and TK1 (P = 0.24) immunoreactivity was ~50 % less in trastuzumab-sensitive xenografts. CONCLUSIONS: [(18) F]FLT-PET provided early response assessment in trastuzumab-sensitive xenografts but only differentiated between trastuzumab-resistant and trastuzumab-sensitive xenografts concurrent with differences in tumor size.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Didesoxinucleosídeos/química , Resistencia a Medicamentos Antineoplásicos , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/metabolismo , Animais , Desenho de Fármacos , Feminino , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Camundongos , Transplante de Neoplasias , Trastuzumab , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used (18)F-NaF to detect these types of cancers in mouse models as the free fluorine, (18)F(-), binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including (99m)Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. METHODS: Thirteen mice were injected subcutaneously in the right flank with 10(6) MDA-MB-231 cells. When the tumor size reached ~0.6 cm(3), mice (n=9) were injected with ~37 MBq of (99m)Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n=4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 µm slices, and underwent autoradiography or von Kossa staining to correlate (99m)Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. RESULTS: Uptake of (99m)Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34±1.46 (mean±SD), 2.22±0.95, and 0.05±0.04%ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35±0.07 (mean±SD) and 0.04±0.01picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between the two modalities (5.1±2.3 for SPECT and 8.8±2.2 for FMT) indicating that there is little difference in tumor uptake between these two agents. CONCLUSION: This study provides evidence of the accessibility of HAP within the breast tumor microenvironment as an in vivo imaging target for bone-seeking agents. SPECT imaging using (99m)Tc-MDP can be rapidly translated to the clinic. FMT imaging using Osteosense 750EX is not currently approved for clinical use and is limited to animal research.
Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/diagnóstico por imagem , Calcinose/complicações , Imagem Óptica , Medronato de Tecnécio Tc 99m , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Osso e Ossos/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Camundongos , Tomografia Computadorizada por Raios XRESUMO
Systemic off-target toxicities, including neurotoxicity, are prevalent side effects in cancer patients treated with a number of otherwise highly efficacious anticancer drugs. In the current study, we have: (1) developed a new analytical metric for the in vivo preclinical assessment of systemic toxicities/neurotoxicity of new drugs and delivery systems; and (2) evaluated, in mice, the in vivo efficacy and toxicity of a versatile and modular NanoDendron (ND) drug delivery and imaging platform that we recently developed. Our paclitaxel-carrying ND prodrug, ND(PXL), is activated following proteolytic cleavage by MMP9, resulting in localized cytotoxic chemotherapy. Using click chemistry, we combined ND(PXL) with a traceable beacon, ND(PB), yielding ND(PXL)-ND(PB) that functions as a theranostic compound. In vivo fluorescence FRET imaging of this theranostic platform was used to confirm localized delivery to tumors and to assess the efficiency of drug delivery to tumors, achieving 25-30% activation in the tumors of an immunocompetent mouse model of breast cancer. In this model, ND-drug exhibited anti-tumor efficacy comparable to nab-paclitaxel, a clinical formulation. In addition, we combined neurobehavioral metrics of nociception and sensorimotor performance of individual mice to develop a novel composite toxicity score that reveals and quantifies peripheral neurotoxicity, a debilitating long-term systemic toxicity of paclitaxel therapy. Importantly, mice treated with nab-paclitaxel developed changes in behavioral metrics with significantly higher toxicity scores indicative of peripheral neuropathy, while mice treated with ND(PXL) showed no significant changes in behavioral responses or toxicity score. Our ND formulation was designed to be readily adaptable to incorporate different drugs, imaging modalities and/or targeting motifs. This formulation has significant potential for preclinical and clinical tools across multiple disease states. The studies presented here report a novel toxicity score for assessing peripheral neuropathy and demonstrate that our targeted, theranostic NDs are safe and effective, providing localized tumor delivery of a chemotherapeutic and with reduced common neurotoxic side-effects.
Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Paclitaxel/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Xenoenxertos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/efeitos adversosRESUMO
We report longitudinal diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast enhanced (DCE)-MRI (7 T) studies designed to identify functional changes, prior to volume changes, in trastuzumab-sensitive and resistant HER2+ breast cancer xenografts. Athymic mice (N = 33) were subcutaneously implanted with trastuzumab-sensitive (BT474) or trastuzumab-resistant (HR6) breast cancer cells. Tumor-bearing animals were distributed into four groups: BT474 treated and control, HR6 treated and control. DW- and DCE-MRI were conducted at baseline, day 1, and day 4; trastuzumab (10 mg/kg) or saline was administered at baseline and day 3. Animals were sacrificed on day 4 and tumors resected for histology. Voxel-based DW- and DCE-MRI analyses were performed to generate parametric maps of ADC, K(trans), and ve. On day 1, no differences in tumor size were observed between any of the groups. On day 4, significant differences in tumor size were observed between treated vs. control BT474, treated BT474 vs. treated HR6, and treated vs. control HR6 (P < .0001). On day 1, ve was significantly higher in the BT474 treated group compared to BT474 control (P = .002) and HR6 treated (P = .004). On day 4, ve and K(trans) were significantly higher in the treated BT474 tumors compared to BT474 controls (P = .0007, P = .02, respectively). A significant decrease in Ki67 staining reinforced response in the BT474 treated group compared to BT474 controls (P = .02). This work demonstrated that quantitative MRI biomarkers have the sensitivity to differentiate treatment response in HER2+ tumors prior to changes in tumor size.