RESUMO
In this review, we will try to convince the readers that the immune system is controlled by an endogenous neural reflex, termed inflammatory reflex, that inhibits the acute immune response during the course of a systemic immune challenge. We will analyse here the contribution of different sympathetic nerves as possible efferent arms of the inflammatory reflex. We will discuss the evidence that demonstrates that neither the splenic sympathetic nerves nor the hepatic sympathetic nerves are necessary for the endogenous neural reflex inhibition of inflammation. We will discuss the contribution of the adrenal glands to the reflex control of inflammation, noting that the neurally mediated release of catecholamines in the systemic circulation is responsible for the enhancement of the anti-inflammatory cytokine interleukin 10 (IL-10) but not of the inhibition of the pro-inflammatory cytokine tumour necrosis factor α (TNF). We will conclude by reviewing the evidence that demonstrates that the splanchnic anti-inflammatory pathway, composed by preganglionic and postganglionic sympathetic splanchnic fibres with different target organs, including the spleen and the adrenal glands, is the efferent arm of the inflammatory reflex. During the course of a systemic immune challenge, the splanchnic anti-inflammatory pathway is endogenously activated to inhibit the TNF and enhance the IL-10 response, independently, presumably acting on separate populations of leukocytes.
Assuntos
Interleucina-10 , Nervos Esplâncnicos , Humanos , Nervos Esplâncnicos/metabolismo , Sistema Nervoso Simpático , Inflamação , Reflexo/fisiologia , Citocinas , Anti-Inflamatórios/farmacologiaRESUMO
In response to dehydration, humans experience thirst. This subjective state is fundamental to survival as it motivates drinking, which subsequently corrects the fluid deficit. To elicit thirst, previous studies have manipulated blood chemistry to produce a physiological thirst stimulus. In the present study, we investigated whether a physiological stimulus is indeed required for thirst to be experienced. Functional MRI (fMRI) was used to scan fully hydrated participants while they imagined a state of intense thirst and while they imagined drinking to satiate thirst. Subjective ratings of thirst were significantly higher for imagining thirst compared with imagining drinking or baseline, revealing a successful dissociation of thirst from underlying physiology. The imagine thirst condition activated brain regions similar to those reported in previous studies of physiologically evoked thirst, including the anterior midcingulate cortex (aMCC), anterior insula, precentral gyrus, inferior frontal gyrus, middle frontal gyrus, and operculum, indicating a similar neural network underlies both imagined thirst and physiologically evoked thirst. Analogous brain regions were also activated during imagined drinking, suggesting the neural representation of thirst contains a drinking-related component. Finally, the aMCC showed an increase in functional connectivity with the insula during imagined thirst relative to imagined drinking, implying functional connectivity between these two regions is needed before thirst can be experienced. As a result of these findings, this study provides important insight into how the neural representation of subjective thirst is generated and how it subsequently motivates drinking behavior.
Assuntos
Encéfalo/fisiologia , Sede , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imaginação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Água/metabolismoRESUMO
The efferent branches of the splanchnic sympathetic nerves that enhance interleukin-10 (IL-10) and suppress tumour necrosis factor-α (TNF) levels in the reflex response to systemic immune challenge were investigated in anaesthetized, ventilated rats. Plasma levels of TNF and IL-10 were measured 90 min after intravenous lipopolysaccharide (LPS, 60 µg/kg). Splanchnic nerve section, ganglionic blockade with pentolinium tartrate or ß2 adrenoreceptor antagonism with ICI 118551 all blocked IL-10 responses. Restoring plasma adrenaline after splanchnic denervation rescued IL-10 responses. TNF responses were disinhibited by splanchnic denervation or pentolinium treatment, but not by ICI 118551. Splanchnic nerve branches were cut individually or in combination in vagotomized rats, ruling out any vagal influence on results. Distal splanchnic denervation, sparing the adrenal nerves, disinhibited TNF but did not reduce IL-10 responses. Selective adrenal denervation depressed IL-10 but did not disinhibit TNF responses. Selective denervation of either spleen or liver did not affect IL-10 or TNF responses, but combined splenic and adrenal denervation did so. Finally, combined section of the cervical and lumbar sympathetic nerves did not affect cytokine responses to LPS. Together, these results show that the endogenous anti-inflammatory reflex is mediated by sympathetic efferent fibres that run in the splanchnic, but not other sympathetic nerves, nor the vagus. Within the splanchnic nerves, divergent pathways control these two cytokine responses: neurally driven adrenaline, acting via ß2 adrenoreceptors, regulates IL-10, while TNF is restrained by sympathetic nerves to abdominal organs including the spleen, where non-ß2 adrenoreceptor mechanisms are dominant. KEY POINTS: An endogenous neural reflex, mediated by the splanchnic, but not other sympathetic nerves, moderates the cytokine response to systemic inflammatory challenge. This reflex suppresses the pro-inflammatory cytokine tumour necrosis factor-α (TNF), while enhancing levels of the anti-inflammatory cytokine interleukin-10 (IL-10). The reflex enhancement of IL-10 depends on the splanchnic nerve supply to the adrenal gland and on ß2 adrenoreceptors, consistent with mediation by circulating adrenaline. After splanchnic nerve section it can be rescued by restoring circulating adrenaline. The reflex suppression of TNF depends on splanchnic nerve branches that innervate abdominal tissues including, but not restricted to, spleen: it is not blocked by adrenal denervation or ß2 adrenoreceptor antagonism. Distinct sympathetic efferent pathways are thus responsible for pro- and anti-inflammatory cytokine components of the reflex regulating inflammation.
Assuntos
Endotoxemia , Interleucina-10 , Fator de Necrose Tumoral alfa , Animais , Citocinas , Epinefrina/sangue , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Tartarato de Pentolínio/farmacologia , Propanolaminas , Ratos , Reflexo/fisiologia , Nervos Esplâncnicos/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/fisiologiaRESUMO
The splanchnic anti-inflammatory pathway, the efferent arm of the endogenous inflammatory reflex, has been shown to suppress the acute inflammatory response of rats to systemic lipopolysaccharide (LPS). Here we show for the first time that this applies also to mice, and that the reflex may be engaged by a range of inflammatory stimuli. Experiments were performed on mice under deep anaesthesia. Half the animals were subjected to bilateral section of the splanchnic sympathetic nerves, to disconnect the splanchnic anti-inflammatory pathway, while the remainder underwent a sham operation. Mice were then challenged intravenously with one of three inflammatory stimuli: the toll-like receptor (TLR)-4 agonist, LPS (60 µg/kg), the TLR-3 agonist Polyinosinic:polycytidylic acid (Poly I:C, 1 mg/kg) or the TLR-2 and -6 agonist dipalmitoyl-S-glyceryl cysteine (Pam2cys, 34 µg/kg). Ninety minutes later, blood was sampled by cardiac puncture for serum cytokine analysis. The splanchnic anti-inflammatory reflex action was assessed by comparing cytokine levels between animals with cut versus those with intact splanchnic nerves. A consistent pattern emerged: Tumor necrosis factor (TNF) levels in response to all three challenges were raised by prior splanchnic nerve section, while levels of the anti-inflammatory cytokine interleukin 10 (IL-10) were reduced. The raised TNF:IL-10 ratio after splanchnic nerve section indicates an enhanced inflammatory state when the reflex is disabled. These findings show for the first time that the inflammatory reflex drives a coordinated anti-inflammatory action also in mice, and demonstrate that its anti-inflammatory action is engaged, in similar fashion, by inflammatory stimuli mimicking a range of bacterial and viral infections.
Assuntos
Lipopolissacarídeos , Nervos Esplâncnicos , Animais , Citocinas , Camundongos , Ratos , Reflexo , Fator de Necrose Tumoral alfaRESUMO
In humans, activity in the anterior midcingulate cortex (aMCC) is associated with both subjective thirst and swallowing. This region is therefore likely to play a prominent role in the regulation of drinking in response to dehydration. Using functional MRI, we investigated this possibility during a period of "drinking behavior" represented by a conjunction of preswallow and swallowing events. These events were examined in the context of a thirsty condition and an "oversated" condition, the latter induced by compliant ingestion of excess fluid. Brain regions associated with swallowing showed increased activity for drinking behavior in the thirsty condition relative to the oversated condition. These regions included the cingulate cortex, premotor areas, primary sensorimotor cortices, the parietal operculum, and the supplementary motor area. Psychophysical interaction analyses revealed increased functional connectivity between the same regions and the aMCC during drinking behavior in the thirsty condition. Functional connectivity during drinking behavior was also greater for the thirsty condition relative to the oversated condition between the aMCC and two subcortical regions, the cerebellum and the rostroventral medulla, the latter containing nuclei responsible for the swallowing reflex. Finally, during drinking behavior in the oversated condition, ratings of swallowing effort showed a negative association with functional connectivity between the aMCC and two cortical regions, the sensorimotor cortex and the supramarginal gyrus. The results of this study provide evidence that the aMCC helps facilitate swallowing during a state of thirst and is therefore likely to contribute to the regulation of drinking after dehydration.
Assuntos
Comportamento de Ingestão de Líquido/fisiologia , Giro do Cíngulo/fisiologia , Sede/fisiologia , Adulto , Deglutição , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Mammals are characterized by a stable core body temperature. When maintenance of core temperature is challenged by ambient or internal heat loads, mammals increase blood flow to the skin, sweat and/or pant, or salivate. These thermoregulatory responses enable evaporative cooling at moist surfaces to dissipate body heat. If water losses incurred during evaporative cooling are not replaced, body fluid homeostasis is challenged. This article reviews the way mammals balance thermoregulation and osmoregulation.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Homeostase/fisiologia , Osmorregulação/fisiologia , Animais , Temperatura Corporal/fisiologia , Humanos , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
The splanchnic anti-inflammatory pathway has been proposed as the efferent arm of the inflammatory reflex. Although much evidence points to the spleen as the principal target organ where sympathetic nerves inhibit immune function, a systematic study to locate the target organ(s) of the splanchnic anti-inflammatory pathway has not yet been made. In anesthetized rats made endotoxemic with lipopolysaccharide (LPS, 60 µg/kg iv), plasma levels of tumor necrosis factor-α (TNF-α) were measured in animals with cut (SplancX) or sham-cut (Sham) splanchnic nerves. We confirm here that disengagement of the splanchnic anti-inflammatory pathway in SplancX rats (17.01 ± 0.95 ng/ml, mean ± SE) strongly enhances LPS-induced plasma TNF-α levels compared with Sham rats (3.76 ± 0.95 ng/ml). In paired experiments, the responses of SplancX and Sham animals were compared after the single or combined removal of organs innervated by the splanchnic nerves. Removal of target organ(s) where the splanchnic nerves inhibit systemic inflammation should abolish any difference in LPS-induced plasma TNF-α levels between Sham and SplancX rats. Any secondary effects of extirpating organs should apply to both groups. Surprisingly, removal of the spleen and/or the adrenal glands did not prevent the reflex splanchnic anti-inflammatory action nor did the following removals: spleen + adrenals + intestine; spleen + intestine + stomach and pancreas; or spleen + intestine + stomach and pancreas + liver. Only when spleen, adrenals, intestine, stomach, pancreas, and liver were all removed did the difference between SplancX and Sham animals disappear. We conclude that the reflex anti-inflammatory action of the splanchnic nerves is distributed widely across abdominal organs.
Assuntos
Abdome/fisiopatologia , Inflamação/fisiopatologia , Nervos Esplâncnicos/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Glândulas Suprarrenais/fisiopatologia , Animais , Pressão Arterial , Catecolaminas/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo , Baço/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
In humans, drinking replenishes fluid loss and satiates the sensation of thirst that accompanies dehydration. Typically, the volume of water drunk in response to thirst matches the deficit. Exactly how this accurate metering is achieved is unknown; recent evidence implicates swallowing inhibition as a potential factor. Using fMRI, this study investigated whether swallowing inhibition is present after more water has been drunk than is necessary to restore fluid balance within the body. This proposal was tested using ratings of swallowing effort and measuring regional brain responses as participants prepared to swallow small volumes of liquid while they were thirsty and after they had overdrunk. Effort ratings provided unequivocal support for swallowing inhibition, with a threefold increase in effort after overdrinking, whereas addition of 8% (wt/vol) sucrose to water had minimal effect on effort before or after overdrinking. Regional brain responses when participants prepared to swallow showed increases in the motor cortex, prefrontal cortices, posterior parietal cortex, striatum, and thalamus after overdrinking, relative to thirst. Ratings of swallowing effort were correlated with activity in the right prefrontal cortex and pontine regions in the brainstem; no brain regions showed correlated activity with pleasantness ratings. These findings are all consistent with the presence of swallowing inhibition after excess water has been drunk. We conclude that swallowing inhibition is an important mechanism in the overall regulation of fluid intake in humans.
Assuntos
Deglutição/fisiologia , Desidratação/diagnóstico por imagem , Ingestão de Líquidos/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Desidratação/fisiopatologia , Feminino , Humanos , Masculino , Concentração Osmolar , Sede/fisiologia , Água/metabolismo , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.
Assuntos
Apetite/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Receptores Opioides mu/genética , Sódio na Dieta/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Apetite/genética , Apetite/fisiologia , Mapeamento Encefálico , Núcleo Central da Amígdala/efeitos dos fármacos , Camundongos , Naloxona/administração & dosagem , Naloxona/análogos & derivados , Neurônios/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacosRESUMO
Increased cardiac sympathetic nerve activity (CSNA) is a key feature of heart failure (HF) and is associated with poor outcome. There is evidence that central angiotensinergic mechanisms contribute to the increased CSNA in HF, but the central sites involved are unknown. In an ovine, rapid pacing model of HF, we investigated the contribution of the lamina terminalis and area postrema to the increased CSNA and also the responses to fourth ventricular infusion of the angiotensin type 1 receptor antagonist losartan. Ablation of the area postrema or sham lesion (n = 6/group), placement of lamina terminalis lesion electrodes (n = 5), and insertion of a cannula into the fourth ventricle (n = 6) were performed when ejection fraction was ~ 50%. When ejection fraction was < 40%, recording electrodes were implanted, and after 3 days, resting CSNA and baroreflex control of CSNA were measured before and following lesion of the lamina terminalis, in groups with lesion or sham lesion of the area postrema and before and following infusion of losartan (1.0 mg/h for 5 h) into the fourth ventricle. In conscious sheep with HF, lesion of the lamina terminalis did not significantly change CSNA (91 ± 2 vs. 86 ± 3 bursts/100 heart beats), whereas CSNA was reduced in the group with lesion of the area postrema (89 ± 3 to 45 ± 10 bursts/100 heart beats, P < 0.01) and following fourth ventricular infusion of losartan (89 ± 3 to 48 ± 8 bursts/100 heartbeats, P < 0.01). These findings indicate that the area postrema and brainstem angiotensinergic mechanisms may play an important role in determining the increased CSNA in HF.
Assuntos
Área Postrema/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Coração/inervação , Hipotálamo/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Área Postrema/cirurgia , Pressão Arterial , Barorreflexo , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Hipotálamo/cirurgia , Infusões Intraventriculares , Losartan/farmacologia , Vias Neurais/fisiopatologia , Sistema Renina-Angiotensina , Carneiro DomésticoRESUMO
The instinct of thirst was a cardinal element in the successful colonization by vertebrates of the dry land of the planet, which began in the Ordovician period about 400 million y ago. It is a commonplace experience in humans that drinking water in response to thirst following fluid loss is a pleasant experience. However, continuing to drink water once thirst has been satiated becomes unpleasant and, eventually, quite aversive. Functional MRI experiments reported here show pleasantness of drinking is associated with activation in the anterior cingulate cortex (Brodmann area 32) and the orbitofrontal cortex. The unpleasantness and aversion of overdrinking is associated with activation in the midcingulate cortex, insula, amygdala, and periaqueductal gray. Drinking activations in the putamen and cerebellum also correlated with the unpleasantness of water, and the motor cortex showed increased activation during overdrinking compared with drinking during thirst. These activations in motor regions may possibly reflect volitional effort to conduct compliant drinking in the face of regulatory mechanisms inhibiting intake. The results suggestive of a specific inhibitory system in the control of drinking are unique.
Assuntos
Encéfalo/fisiologia , Água Potável , Sede , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? Sodium appetite is controlled by conserved neuronal transmitter-receptor systems. Here, we tested the contribution made by relaxin family peptide 3 receptor (RXFP3), the cognate G-protein-coupled receptor for the neuropeptide relaxin-3. What is the main finding and its importance? Intracerebroventricular infusion of an RXFP3 antagonist reduced in a dose-dependent manner the volume of 0.3 m NaCl consumed by sodium-depleted C57Bl/6J (wild-type) mice. This effect was absent in sodium-depleted Rxfp3 knockout mice, and RXFP3 antagonist infusion did not alter water consumption in wild-type mice subjected to multiple thirst tests, indicating both the pharmacological and the physiological specificity of observed effects. Our findings identify endogenous relaxin-3-RXFP3 signalling as a modulator of sodium appetite. Overconsumption of highly salted foods is common in Western diets and contributes significantly to metabolic disorders such as hypertension, renal dysfunction and diabetes. Sodium appetite, or the desire of terrestrial animals to seek and consume sodium-containing salts, is a behaviour mediated by a set of evolutionarily conserved neuronal systems. In these studies, we tested whether this instinctive behavioural drive is influenced by the G-protein-coupled relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the neuropeptide relaxin-3, because relaxin-3-RXFP3 signalling can modulate arousal, motivation and ingestive behaviours. Intracerebroventricular (i.c.v.) infusion of the selective RXFP3 antagonist, R3(B1-22)R, reduced in a dose-dependent manner the volume of 0.3 m NaCl solution consumed when offered to sodium-depleted C57Bl/6J wild-type mice, relative to vehicle-treated control animals. Notably, i.c.v. R3(B1-22)R infusion did not alter 0.3 m NaCl consumption relative to vehicle in sodium-depleted Rxfp3 knockout mice, confirming the pharmacological specificity of this effect. Furthermore, i.c.v. R3(B1-22)R did not alter the volume of water consumed by wild-type mice in three tests where water drinking was the normal physiological response, suggesting that the ability of R3(B1-22)R to reduce activated salt appetite is specific and not due to a generalized reduction in drinking behaviour. These findings identify, for the first time, that endogenous relaxin-3-RXFP3 signalling is a powerful mediator of salt appetite in mice and further elucidate the functional role of the relaxin-3-RXFP3 system in the integrative control of motivated behaviours.
Assuntos
Apetite/fisiologia , Relaxina/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Sódio/metabolismo , Animais , Nível de Alerta/fisiologia , Comportamento de Ingestão de Líquido/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Hypertonic NaCl infused into the carotid arteries increases mean arterial pressure (MAP) and changes sympathetic nerve activity (SNA) via cerebral mechanisms. We hypothesized that elevated sodium levels in the blood supply to the brain would induce differential responses in renal and cardiac SNA via sensors located outside the blood-brain barrier. To investigate this hypothesis, we measured renal and cardiac SNA simultaneously in conscious sheep during intracarotid infusions of NaCl (1.2 M), sorbitol (2.4 M), or urea (2.4 M) at 1 ml/min for 4 min into each carotid. Intracarotid NaCl significantly increased MAP (91 ± 2 to 97 ± 3 mmHg, P < 0.05) without changing heart rate (HR). Intracarotid NaCl was associated with no change in cardiac SNA (11 ± 5.0%), but a significant inhibition of renal SNA (-32.5 ± 6.4%, P < 0.05). Neither intracarotid sorbitol nor urea changed MAP, HR, central venous pressure, cardiac SNA, and renal SNA. The changes in MAP and renal SNA were completely abolished by microinjection of the GABA agonist muscimol (5 mM, 500 nl each side) into the paraventricular nucleus of the hypothalamus (PVN). Infusion of intracarotid NaCl for 20 min stimulated a larger increase in water intake (1,100 ± 75 ml) than intracarotid sorbitol (683 ± 125 ml) or intracarotid urea (0 ml). These results demonstrate that acute increases in blood sodium levels cause a decrease in renal SNA, but no change in cardiac SNA in conscious sheep. These effects are mediated by cerebral sensors located outside the blood-brain barrier that are more responsive to changes in sodium concentration than osmolality. The renal sympathoinhibitory effects of sodium are mediated via a pathway that synapses in the PVN.
Assuntos
Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Solução Salina Hipertônica/farmacologia , Cloreto de Sódio/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Feminino , Coração/inervação , Rim/inervação , Muscimol/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , OvinosRESUMO
Following an immune challenge, there is two-way communication between the nervous and immune systems. It is proposed that a neural reflex--the inflammatory reflex--regulates the plasma levels of the key proinflammatory cytokine TNF-α, and that its efferent pathway is in the splanchnic sympathetic nerves. The evidence for this reflex is based on experiments on anesthetized animals, but anesthesia itself suppresses inflammation, confounding interpretation. Here, we show that previous section of the splanchnic nerves strongly enhances the levels of plasma TNF-α in conscious rats 90 min after they received intravenous LPS (60 µg/kg). The same reflex mechanism, therefore, applies in conscious as in anesthetized animals. In anesthetized rats, we then determined the longer-term effects of splanchnic nerve section on responses to LPS (60 µg/kg iv). We confirmed that prior splanchnic nerve section enhanced the early (90 min) peak in plasma TNF-α and found that it reduced the 90-min peak of the anti-inflammatory cytokine IL-10; both subsequently fell to low levels in all animals. Splanchnic nerve section also enhanced the delayed rise in two key proinflammatory cytokines IL-6 and interferon γ. That enhancement was undiminished after 6 h, when other measured cytokines had subsided. Finally, LPS treatment caused hypotensive shock in rats with cut splanchnic nerves but not in sham-operated animals. These findings demonstrate that reflex activation of the splanchnic anti-inflammatory pathway has a powerful and sustained restraining influence on inflammatory processes.
Assuntos
Anestesia , Inflamação/metabolismo , Reflexo/fisiologia , Transdução de Sinais/fisiologia , Nervos Esplâncnicos/fisiologia , Animais , Corticosterona/sangue , Corticosterona/genética , Corticosterona/metabolismo , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Sodium appetite is an instinct that involves avid specific intention. It is elicited by sodium deficiency, stress-evoked adrenocorticotropic hormone (ACTH), and reproduction. Genome-wide microarrays in sodium-deficient mice or after ACTH infusion showed up-regulation of hypothalamic genes, including dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP-32), dopamine receptors-1 and -2, α-2C- adrenoceptor, and striatally enriched protein tyrosine phosphatase (STEP). Both DARPP-32 and neural plasticity regulator activity-regulated cytoskeleton associated protein (ARC) were up-regulated in lateral hypothalamic orexinergic neurons by sodium deficiency. Administration of dopamine D1 (SCH23390) and D2 receptor (raclopride) antagonists reduced gratification of sodium appetite triggered by sodium deficiency. SCH23390 was specific, having no effect on osmotic-induced water drinking, whereas raclopride also reduced water intake. D1 receptor KO mice had normal sodium appetite, indicating compensatory regulation. Appetite was insensitive to SCH23390, confirming the absence of off-target effects. Bilateral microinjection of SCH23390 (100 nM in 200 nL) into rats' lateral hypothalamus greatly reduced sodium appetite. Gene set enrichment analysis in hypothalami of mice with sodium appetite showed significant enrichment of gene sets previously linked to addiction (opiates and cocaine). This finding of concerted gene regulation was attenuated on gratification with perplexingly rapid kinetics of only 10 min, anteceding significant absorption of salt from the gut. Salt appetite and hedonic liking of salt taste have evolved over >100 million y (e.g., being present in Metatheria). Drugs causing pleasure and addiction are comparatively recent and likely reflect usurping of evolutionary ancient systems with high survival value by the gratification of contemporary hedonic indulgences. Our findings outline a molecular logic for instinctive behavior encoded by the brain with possible important translational-medical implications.
Assuntos
Apetite/genética , Comportamento Aditivo/genética , Hipotálamo/fisiologia , Sódio na Dieta/administração & dosagem , Hormônio Adrenocorticotrópico/administração & dosagem , Hormônio Adrenocorticotrópico/fisiologia , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Comportamento Aditivo/fisiopatologia , Evolução Biológica , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Ingestão de Líquidos/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Hipotálamo/efeitos dos fármacos , Instinto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Psicológicos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , RecompensaRESUMO
The paraventricular nucleus of the hypothalamus (PVN) plays a major role in central cardiovascular and volume control, and has been implicated in controlling sympathetic nerve activity (SNA) during volume expansion and in heart failure (HF). The objectives were to determine the role of the PVN on cardiac and renal SNA (CSNA and RSNA) in conscious normal sheep and sheep with pacing-induced heart failure. In normovolaemic sheep in the normal state and in HF, bilateral microinjection of the GABA agonist muscimol (2 mm, 500 nl), had no effects on resting mean arterial pressure (MAP), heart rate (HR), CSNA or RSNA. In addition, neither chemical inhibition of the PVN using the inhibitory amino acid glycine (0.5 m, 500 nl), nor electrolytic lesion of the PVN reduced the elevated level of CSNA in HF. Dysinhibition of the PVN with bilateral microinjection of bicuculline (1 mm, 500 nl) in normal sheep increased MAP, HR and CSNA, but decreased RSNA, whereas in HF bicuculline had no effects on MAP, HR or CSNA, but inhibited RSNA. During volume expansion in normal sheep, muscimol reversed the inhibition of RSNA, but not of CSNA. In summary, removal of endogenous GABAergic inhibition to the PVN indicated that CSNA is normally under inhibitory control. Although this inhibition was absent in HF, the responses to pharmacological inhibition, or lesion of the PVN, indicates that it does not drive the increased CSNA in HF. These findings indicate the PVN has a greater influence on RSNA than CSNA in the resting state in normal and HF sheep, and during volume expansion in normal sheep.
Assuntos
Insuficiência Cardíaca/fisiopatologia , Coração/fisiologia , Rim/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Animais , Bicuculina/farmacologia , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Glicina/farmacologia , Glicinérgicos/farmacologia , Muscimol/farmacologia , Neurônios/fisiologia , Ovinos , Sistema Nervoso SimpáticoRESUMO
Heat dissipation from the rat's tail is reduced in response to cold and during fever. The sympathetic premotor neurons for this mechanism, located in the medullary raphé, are under tonic inhibitory control from the preoptic area. In parallel with the inhibitory pathway, an excitatory pathway from the rostromedial preoptic region (RMPO) to the medullary raphé mediates the vasoconstrictor response to cold skin. Whether this applies also to the tail vasoconstrictor response in fever is unknown. Single- or a few-unit tail sympathetic nerve activity (SNA) was recorded in urethane-anesthetized, artificially ventilated rats. Experimental fever was induced by PGE2 injected into the lateral cerebral ventricle (50 ng in 1.5 µl icv) or into the RMPO (0.2 ng in 60 nl); in both cases, there was a robust increase in tail SNA and a delayed rise in core temperature. Microinjection of glutamate receptor antagonist kynurenate (50 mM, 120 nl) into the medullary raphé completely reversed the tail SNA response to intracerebroventricular or RMPO PGE2 injection. Inhibiting RMPO neurons by microinjecting glycine (0.5 M, 60 nl) or the GABAA receptor agonist, muscimol (2 mM, 30-60 nl), reduced the tail SNA response to PGE2 injected into the same site by approximately half. Vehicle injections into the medullary raphé or RMPO were without effect. These results suggest that the tail vasoconstrictor response during experimental fever depends on a glutamatergic excitatory synaptic relay in the medullary raphé and that an excitatory output signal from the RMPO contributes to the tail vasoconstrictor response during fever.
Assuntos
Febre/fisiopatologia , Área Pré-Óptica/fisiologia , Núcleos da Rafe/fisiologia , Transdução de Sinais/fisiologia , Cauda/irrigação sanguínea , Cauda/inervação , Vasoconstrição/fisiologia , Animais , Dinoprostona/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Febre/induzido quimicamente , Glicina/farmacologia , Ácido Cinurênico/farmacologia , Masculino , Microinjeções , Modelos Animais , Muscimol/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Cauda/fisiologiaRESUMO
BACKGROUND: The autonomic nervous system can modulate the innate immune responses to bacterial infections via the splanchnic sympathetic nerves. Here, we aimed to determine the effects of bilateral splanchnic sympathetic nerve denervation on blood pressure, plasma cytokines, blood bacterial counts and the clinical state in sheep with established bacteremia. METHODS: Conscious Merino ewes received an intravenous infusion of Escherichia coli for 30 h (1 × 109 colony forming units/mL/h) to induce bacteremia. At 24 h, sheep were randomized to have bilaterally surgically implanted snares pulled to induce splanchnic denervation (N = 10), or not pulled (sham; N = 9). RESULTS: Splanchnic denervation did not affect mean arterial pressure (84 ± 3 vs. 84 ± 4 mmHg, mean ± SEM; PGroup = 0.7) compared with sham treatment at 30-h of bacteremia. Splanchnic denervation increased the plasma levels of the pro-inflammatory cytokine interleukin-6 (9.2 ± 2.5 vs. 3.8 ± 0.3 ng/mL, PGroup = 0.031) at 25-h and reduced blood bacterial counts (2.31 ± 0.45 vs. 3.45 ± 0.11 log10 [CFU/mL + 1], PGroup = 0.027) at 26-h compared with sham treatment. Plasma interleukin-6 and blood bacterial counts returned to sham levels by 30-h. There were no differences in the number of bacteria present within the liver (PGroup = 0.3). However, there was a sustained improvement in clinical status, characterized by reduced respiratory rate (PGroup = 0.024) and increased cumulative water consumption (PGroup = 0.008) in splanchnic denervation compared with sham treatment. CONCLUSION: In experimental Gram-negative bacteremia, interrupting splanchnic sympathetic nerve activity increased plasma interleukin-6, accelerated bacterial clearance, and improved clinical state without inducing hypotension. These findings suggest that splanchnic neural manipulation is a potential target for pharmacological or non-pharmacological interventions.
RESUMO
Blood flow to glabrous skin such as the rat's tail determines heat dissipation from the body and is regulated by sympathetic vasoconstrictor nerves. Tail vasoconstrictor activity is tonically inhibited by neurons in two distinct preoptic regions, rostromedial (RMPO) and caudolateral (CLPO) regions, whose actions may be via direct projections to medullary raphé premotor neurons. In urethane-anesthetized rats, we sought single preoptic neurons that were antidromically activated from the medullary raphé and could subserve this function. Nine of 45 raphé-projecting preoptic neurons, predominantly in the CLPO, showed spontaneous activity under warm conditions and were inhibited by cooling the trunk skin (warm-responsive). Unexpectedly, 14 raphé-projecting preoptic neurons (mostly in the RMPO) were activated by skin cooling (cold-responsive), suggesting that an excitatory pathway from this region could contribute to tail vasoconstriction. Supporting this, neuronal disinhibition in the RMPO by microinjecting the GABA(A) receptor antagonist bicuculline (0.5 mm, 15 nl) caused a rapid increase in tail sympathetic nerve activity (SNA). Similar injections into the CLPO were without effect. Electrical stimulation of the RMPO also activated tail SNA, with a latency â¼25 ms longer than to stimulation of the medullary raphé. Injection of the glutamate receptor antagonist kynurenate (50 mm, 120 nl) into the medullary raphé suppressed tail SNA responses to both RMPO bicuculline and skin cooling. These findings suggest that both inhibitory and excitatory descending drives regulate tail vasoconstriction in the cold and that warm- and cold-responsive raphé-projecting preoptic neurons may mediate these actions.