Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
2.
Mol Plant Microbe Interact ; 36(12): 754-763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750829

RESUMO

Cytoplasmic effectors with an Arg-any amino acid-Arg-Leu (RxLR) motif are encoded by hundreds of genes within the genomes of oomycete Phytophthora spp. and downy mildew pathogens. There has been a dramatic increase in our understanding of the evolution, function, and recognition of these effectors. Host proteins with a wide range of subcellular localizations and functions are targeted by RxLR effectors. Many processes are manipulated, including transcription, post-translational modifications, such as phosphorylation and ubiquitination, secretion, and intracellular trafficking. This involves an array of RxLR effector modes-of-action, including stabilization or destabilization of protein targets, altering or disrupting protein complexes, inhibition or utility of target enzyme activities, and changing the location of protein targets. Interestingly, approximately 50% of identified host proteins targeted by RxLR effectors are negative regulators of immunity. Avirulence RxLR effectors may be directly or indirectly detected by nucleotide-binding leucine-rich repeat resistance (NLR) proteins. Direct recognition by a single NLR of RxLR effector orthologues conserved across multiple Phytophthora pathogens may provide wide protection of diverse crops. Failure of RxLR effectors to interact with or appropriately manipulate target proteins in nonhost plants has been shown to restrict host range. This knowledge can potentially be exploited to alter host targets to prevent effector interaction, providing a barrier to host infection. Finally, recent evidence suggests that RxLR effectors, like cytoplasmic effectors from fungal pathogen Magnaporthe oryzae, may enter host cells via clathrin-mediated endocytosis. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora infestans , Sequência de Aminoácidos , Motivos de Aminoácidos , Proteínas/metabolismo , Produtos Agrícolas , Doenças das Plantas/microbiologia
3.
J Exp Bot ; 74(10): 3188-3202, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36860200

RESUMO

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.


Assuntos
Oomicetos , Phytophthora infestans , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Virulência , Retículo Endoplasmático/metabolismo , Doenças das Plantas
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835216

RESUMO

The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.


Assuntos
Transdução de Sinal Luminoso , Plantas , Plantas/metabolismo , Transdução de Sinais , Virulência , Cloroplastos , Doenças das Plantas , Imunidade Vegetal
5.
J Exp Bot ; 73(19): 6902-6915, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35816329

RESUMO

Oomycete pathogens secrete hundreds of cytoplasmic RxLR effectors to modulate host immunity by targeting diverse plant proteins. Revealing how effectors manipulate host proteins is pivotal to understanding infection processes and to developing new strategies to control plant disease. Here we show that the Phytophthora infestans RxLR effector Pi22798 interacts in the nucleus with a potato class II knotted-like homeobox (KNOX) transcription factor, StKNOX3. Silencing the ortholog NbKNOX3 in Nicotiana benthamiana reduces host colonization by P. infestans, whereas transient and stable overexpression of StKNOX3 enhances infection. StKNOX3 forms a homodimer which is dependent on its KNOX II domain. The KNOX II domain is also essential for Pi22798 interaction and for StKNOX3 to enhance P. infestans colonization, indicating that StKNOX3 homodimerization contributes to susceptibility. However, critically, the effector Pi22798 promotes StKNOX3 homodimerization, rather than heterodimerization to another KNOX transcription factor StKNOX7. These results demonstrate that the oomycete effector Pi22798 increases pathogenicity by promoting homodimerization specifically of StKNOX3 to enhance susceptibility.


Assuntos
Phytophthora infestans , Solanum tuberosum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas
6.
Proc Natl Acad Sci U S A ; 115(33): E7834-E7843, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30049706

RESUMO

Plant pathogens deliver effectors into plant cells to suppress immunity. Whereas many effectors inactivate positive immune regulators, other effectors associate with negative regulators of immunity: so-called susceptibility (S) factors. Little is known about how pathogens exploit S factors to suppress immunity. Phytophthora infestans RXLR effector Pi02860 interacts with host protein NRL1, which is an S factor whose activity suppresses INF1-triggered cell death (ICD) and is required for late blight disease. We show that NRL1 interacts in yeast and in planta with a guanine nucleotide exchange factor called SWAP70. SWAP70 associates with endosomes and is a positive regulator of immunity. Virus-induced gene silencing of SWAP70 in Nicotiana benthamiana enhances P. infestans colonization and compromises ICD. In contrast, transient overexpression of SWAP70 reduces P. infestans infection and accelerates ICD. Expression of Pi02860 and NRL1, singly or in combination, results in proteasome-mediated degradation of SWAP70. Degradation of SWAP70 is prevented by silencing NRL1, or by mutation of Pi02860 to abolish its interaction with NRL1. NRL1 is a BTB-domain protein predicted to form the substrate adaptor component of a CULLIN3 ubiquitin E3 ligase. A dimerization-deficient mutant, NRL1NQ, fails to interact with SWAP70 but maintains its interaction with Pi02860. NRL1NQ acts as a dominant-negative mutant, preventing SWAP70 degradation in the presence of effector Pi02860, and reducing P. infestans infection. Critically, Pi02860 enhances the association between NRL1 and SWAP70 to promote proteasome-mediated degradation of the latter and, thus, suppress immunity. Preventing degradation of SWAP70 represents a strategy to combat late blight disease.


Assuntos
Proteínas de Ligação a DNA/imunologia , Nicotiana/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Proteínas Culina/genética , Proteínas Culina/imunologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Phytophthora infestans/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteólise , Nicotiana/genética , Nicotiana/microbiologia
7.
Plant Physiol ; 180(4): 2227-2239, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31217198

RESUMO

The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kß2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kß2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kß2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kß2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kß2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kß2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.


Assuntos
Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Morte Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
PLoS Genet ; 13(1): e1006540, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056034

RESUMO

Hypersensitive response programmed cell death (HR-PCD) is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.


Assuntos
Imunidade Vegetal , Proteínas de Plantas/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Morte Celular , Mutação , Proteínas de Plantas/genética , Ligação Proteica , Nicotiana/genética , Nicotiana/imunologia , Ubiquitina-Proteína Ligases/genética
9.
New Phytol ; 222(1): 438-454, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536576

RESUMO

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Assuntos
Phytophthora infestans/metabolismo , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Transcrição Gênica , Apoptose/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Flagelina/farmacologia , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Multimerização Proteica , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Virulência
10.
J Exp Bot ; 70(1): 343-356, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329083

RESUMO

Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/microbiologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Fatores de Virulência/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/microbiologia , Regulação para Cima
11.
Plant Cell Rep ; 38(2): 173-182, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30488097

RESUMO

KEY MESSAGE: Oomycetes MAMP Pep-13 can trigger SERK3/BAK1-independent PTI. Silencing of SERK3/BAK1 in solanaceous plants resulted in reduced expression of brassinosteroid marker genes and enhanced PTI transcriptional responses to Pep-13 treatment. To prevent disease, pattern recognition receptors (PRRs) are responsible for detecting microbe-associated molecular patterns (MAMPs) to switch on plant innate immunity. SOMATIC EMBROYOGENESIS KINASE 3 (SERK3)/BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) is a well-characterized receptor-like kinase (RLK) that serves as a pivotal co-receptor with PRRs to activate immunity following recognition of MAMPs including flg22, EF-Tu, INF1 and XEG1. However, the requirement for SERK3/BAK1 in many pattern-triggered immune (PTI) signaling pathways is not yet known. Pep-13 is an oomycete MAMP that consists of a highly conserved motif (an oligopeptide of 13 amino acids) shared in Phytophthora transglutaminases. Quantitative RT-PCR analysis reveals that the transcripts of three PTI marker genes (WRKY7, WRKY8 and ACRE31) rapidly accumulate in response to three different MAMPs: flg22, chitin and Pep-13. Whereas silencing of SERK3/BAK1 in Nicotiana benthamiana or potato compromised transcript accumulation in response to flg22, it did not attenuate WRKY7, WRKY8 and ACRE31 up-regulation in response to chitin or Pep-13. This indicates that Pep-13 triggers immunity in a SERK3/BAK1-independent manner, similar to chitin. Surprisingly, silencing of SERK3/BAK1 led to significantly increased accumulation of PTI marker gene transcripts following Pep-13 or chitin treatment, compared to controls. This was accompanied by reduced expression of brassinosteroid (BR) marker genes StSTDH, StEXP8 and StCAB50 and StCHL1, which is a negative regulator of PTI, supporting previous reports that SERK3/BAK1-dependent BR signaling attenuates plant immunity. We provide Pep-13 as an alternative to chitin as a trigger of SERK3/BAK1-independent immunity.


Assuntos
Alarminas/metabolismo , Nicotiana/imunologia , Phytophthora infestans/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Solanum tuberosum/imunologia , Brassinosteroides/farmacologia , Quitina/farmacologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos/farmacologia , Phytophthora infestans/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Transcrição Gênica/efeitos dos fármacos
12.
New Phytol ; 219(4): 1433-1446, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932222

RESUMO

Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.


Assuntos
Calmodulina/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Phytophthora infestans/metabolismo , Imunidade Vegetal , Proteínas/química , Proteínas/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cálcio/farmacologia , Membrana Celular/metabolismo , Solanum lycopersicum/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Phytophthora infestans/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
13.
Plant Physiol ; 171(1): 645-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966171

RESUMO

Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiologia , Morte Celular/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Phytophthora infestans/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Nicotiana/genética , Nicotiana/metabolismo
14.
Plant Cell ; 26(3): 1345-59, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24632534

RESUMO

Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity-related signaling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Phytophthora infestans/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/imunologia , Fosforilação , Phytophthora infestans/crescimento & desenvolvimento , Ligação Proteica
15.
PLoS Pathog ; 10(4): e1004057, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763622

RESUMO

Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Peptídeos/imunologia , Phytophthora infestans/imunologia , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peptídeos/genética , Phytophthora infestans/genética
16.
PLoS Pathog ; 9(10): e1003670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130484

RESUMO

The potato late blight pathogen Phytophthora infestans secretes an array of effector proteins thought to act in its hosts by disarming defences and promoting pathogen colonisation. However, little is known about the host targets of these effectors and how they are manipulated by the pathogen. This work describes the identification of two putative membrane-associated NAC transcription factors (TF) as the host targets of the RxLR effector PITG_03192 (Pi03192). The effector interacts with NAC Targeted by Phytophthora (NTP) 1 and NTP2 at the endoplasmic reticulum (ER) membrane, where these proteins are localised. Transcripts of NTP1 and NTP2 rapidly accumulate following treatment with culture filtrate (CF) from in vitro grown P. infestans, which acts as a mixture of Phytophthora PAMPs and elicitors, but significantly decrease during P. infestans infection, indicating that pathogen activity may prevent their up-regulation. Silencing of NTP1 or NTP2 in the model host plant Nicotiana benthamiana increases susceptibility to P. infestans, whereas silencing of Pi03192 in P. infestans reduces pathogenicity. Transient expression of Pi03192 in planta restores pathogenicity of the Pi03192-silenced line. Moreover, colonisation by the Pi03192-silenced line is significantly enhanced on N. benthamiana plants in which either NTP1 or NTP2 have been silenced. StNTP1 and StNTP2 proteins are released from the ER membrane following treatment with P. infestans CF and accumulate in the nucleus, after which they are rapidly turned over by the 26S proteasome. In contrast, treatment with the defined PAMP flg22 fails to up-regulate NTP1 and NTP2, or promote re-localisation of their protein products to the nucleus, indicating that these events follow perception of a component of CF that appears to be independent of the FLS2/flg22 pathway. Importantly, Pi03192 prevents CF-triggered re-localisation of StNTP1 and StNTP2 from the ER into the nucleus, revealing a novel effector mode-of-action to promote disease progression.


Assuntos
Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Retículo Endoplasmático/genética , Inativação Gênica , Phytophthora infestans/genética , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/microbiologia , Fatores de Transcrição/genética
17.
J Exp Bot ; 66(11): 3189-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873665

RESUMO

Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Solanum tuberosum/enzimologia , Ubiquitina-Proteína Ligases/genética , Apoptose , Núcleo Celular/enzimologia , Inativação Gênica , Mutação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/imunologia , Ubiquitina-Proteína Ligases/metabolismo
18.
Trends Plant Sci ; 28(8): 876-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270351

RESUMO

Recent research demonstrates that undermining interactions between pathogen effectors and their host target proteins can reduce infection. As more effector-target pairs are identified, their structures and interaction surfaces exposed, and there is the possibility of making multiple edits to diverse plant genomes, the desire to convert crops to nonhosts could become reality.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Produtos Agrícolas/genética , Genoma de Planta , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno
19.
Methods Mol Biol ; 2354: 95-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448156

RESUMO

Yeast two-hybrid (Y2H) is a technique used to identify protein-protein interactions. It relies on interacting proteins bringing the two domains of a split transcription factor into close proximity, thereby reconstituting its ability to activate reporter genes. There are many variations on this technique. Here we provide an adapted protocol based on the Invitrogen ProQuest™ Two-Hybrid system, which has been used successfully to screen over 60 Phytophthora infestans pathogen effector proteins to identify candidate-interacting proteins in Solanum tuberosum, and has been used to identify many potato-potato protein-protein interactions.


Assuntos
Solanum tuberosum , Phytophthora infestans , Doenças das Plantas , Saccharomyces cerevisiae , Solanum tuberosum/genética , Fatores de Transcrição , Técnicas do Sistema de Duplo-Híbrido
20.
Plant Commun ; 1(4): 100050, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33367246

RESUMO

The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.


Assuntos
Fungos/genética , Interações Hospedeiro-Patógeno , Oomicetos/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Fungos/patogenicidade , Oomicetos/metabolismo , Oomicetos/patogenicidade , Células Vegetais/microbiologia , Transporte Proteico , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA