Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7907): 684-688, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444275

RESUMO

Remarkably well-preserved soft tissues in Mesozoic fossils have yielded substantial insights into the evolution of feathers1. New evidence of branched feathers in pterosaurs suggests that feathers originated in the avemetatarsalian ancestor of pterosaurs and dinosaurs in the Early Triassic2, but the homology of these pterosaur structures with feathers is controversial3,4. Reports of pterosaur feathers with homogeneous ovoid melanosome geometries2,5 suggest that they exhibited limited variation in colour, supporting hypotheses that early feathers functioned primarily in thermoregulation6. Here we report the presence of diverse melanosome geometries in the skin and simple and branched feathers of a tapejarid pterosaur from the Early Cretaceous found in Brazil. The melanosomes form distinct populations in different feather types and the skin, a feature previously known only in theropod dinosaurs, including birds. These tissue-specific melanosome geometries in pterosaurs indicate that manipulation of feather colour-and thus functions of feathers in visual communication-has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7-9 was active early in feather evolution.


Assuntos
Evolução Biológica , Dinossauros , Plumas , Fósseis , Melanossomas , Animais , Dinossauros/anatomia & histologia , Pigmentação
2.
Proc Biol Sci ; 290(2007): 20231333, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37727088

RESUMO

Many fossil insects show monochromatic colour patterns that may provide valuable insights into ancient insect behaviour and ecology. Whether these patterns reflect original pigmentary coloration is, however, unknown, and their formation mechanism has not been investigated. Here, we performed thermal maturation experiments on extant beetles with melanin-based colour patterns. Scanning electron microscopy reveals that melanin-rich cuticle is more resistant to degradation than melanin-poor cuticle: with progressive maturation, melanin-poor cuticle regions experience preferential thinning and loss, yet melanin-rich cuticle remains. Comparative analysis of fossil insects with monotonal colour patterns confirms that the variations in tone correspond to variations in preserved cuticle thickness. These preserved colour patterns can thus be plausibly explained as melanin-based patterning. Recognition of melanin-based colour patterns in fossil insects opens new avenues for interpreting the evolution of insect coloration and behaviour through deep time.


Assuntos
Besouros , Fósseis , Animais , Cor , Melaninas , Insetos
3.
Proc Biol Sci ; 290(2003): 20231102, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37464754

RESUMO

Pterosaurs evolved a broad range of body sizes, from small-bodied early forms with wingspans of mostly 1-2 m to the last-surviving giants with sizes of small airplanes. Since all pterosaurs began life as small hatchlings, giant forms must have attained large adult sizes through new growth strategies, which remain largely unknown. Here we assess wing ontogeny and performance in the giant Pteranodon and the smaller-bodied anurognathids Rhamphorhynchus, Pterodactylus and Sinopterus. We show that most smaller-bodied pterosaurs shared negative allometry or isometry in the proximal elements of the fore- and hindlimbs, which were critical elements for powering both flight and terrestrial locomotion, whereas these show positive allometry in Pteranodon. Such divergent growth allometry typically signals different strategies in the precocial-altricial spectrum, suggesting more altricial development in Pteranodon. Using a biophysical model of powered and gliding flight, we test and reject the hypothesis that an aerodynamically superior wing planform could have enabled Pteranodon to attain its larger body size. We therefore propose that a shift from a plesiomorphic precocial state towards a derived state of enhanced parental care may have relaxed the constraints of small body sizes and allowed the evolution of derived flight anatomies critical for the flying giants.


Assuntos
Evolução Biológica , Fósseis , Animais , Asas de Animais , Locomoção , Tamanho Corporal , Voo Animal
4.
Proc Natl Acad Sci U S A ; 116(36): 17880-17889, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427524

RESUMO

Recent discoveries of nonintegumentary melanosomes in extant and fossil amphibians offer potential insights into the physiological functions of melanin not directly related to color production, but the phylogenetic distribution and evolutionary history of these internal melanosomes has not been characterized systematically. Here, we present a holistic method to discriminate among melanized tissues by analyzing the anatomical distribution, morphology, and chemistry of melanosomes in various tissues in a phylogenetically broad sample of extant and fossil vertebrates. Our results show that internal melanosomes in all extant vertebrates analyzed have tissue-specific geometries and elemental signatures. Similar distinct populations of preserved melanosomes in phylogenetically diverse vertebrate fossils often map onto specific anatomical features. This approach also reveals the presence of various melanosome-rich internal tissues in fossils, providing a mechanism for the interpretation of the internal anatomy of ancient vertebrates. Collectively, these data indicate that vertebrate melanins share fundamental physiological roles in homeostasis via the scavenging and sequestering of metals and suggest that intimate links between melanin and metal metabolism in vertebrates have deep evolutionary origins.


Assuntos
Extinção Biológica , Fósseis , Melanossomas/química , Vertebrados , Animais , Melaninas/química , Melaninas/metabolismo , Melanossomas/ultraestrutura , Especificidade de Órgãos
5.
Biol Lett ; 16(4): 20200063, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289243

RESUMO

Extant weevils exhibit a remarkable colour palette that ranges from muted monochromatic tones to rainbow-like iridescence, with the most vibrant colours produced by three-dimensional photonic nanostructures housed within cuticular scales. Although the optical properties of these nanostructures are well understood, their evolutionary history is not fully resolved, in part due to a poor knowledge of their fossil record. Here, we report three-dimensional photonic nanostructures preserved in brightly coloured scales of two weevils, belonging to the genus Phyllobius or Polydrusus, from the Pleistocene (16-10 ka) of Switzerland. The scales display vibrant blue, green and yellow hues that resemble those of extant Phyllobius/Polydrusus. Scanning electron microscopy and small-angle X-ray scattering analyses reveal that the subfossil scales possess a single-diamond photonic crystal nanostructure. In extant Phyllobius/Polydrusus, the near-angle-independent blue and green hues function primarily in crypsis. The preservation of far-field, angle-independent structural colours in the Swiss subfossil weevils and their likely function in substrate matching confirm the importance of investigating fossil and subfossil photonic nanostructures to understand the evolutionary origins and diversification of colours and associated behaviours (e.g. crypsis) in insects.


Assuntos
Gorgulhos , Animais , Cor , Fósseis , Microscopia Eletrônica de Varredura , Suíça
6.
Proc Biol Sci ; 286(1913): 20191649, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31640518

RESUMO

Screening pigments are essential for vision in animals. Vertebrates use melanins bound in melanosomes as screening pigments, whereas cephalopods are assumed to use ommochromes. Preserved eye melanosomes in the controversial fossil Tullimonstrum (Mazon Creek, IL, USA) are partitioned by size and/or shape into distinct layers. These layers resemble tissue-specific melanosome populations considered unique to the vertebrate eye. Here, we show that extant cephalopod eyes also show tissue-specific size- and/or shape-specific partitioning of melanosomes; these differ from vertebrate melanosomes in the relative abundance of trace metals and in the binding environment of copper. Chemical signatures of melanosomes in the eyes of Tullimonstrum more closely resemble those of modern cephalopods than those of vertebrates, suggesting that an invertebrate affinity for Tullimonstrum is plausible. Melanosome chemistry may thus provide insights into the phylogenetic affinities of enigmatic fossils where melanosome size and/or shape are equivocal.


Assuntos
Evolução Biológica , Cefalópodes , Melanossomas , Vertebrados , Animais , Fósseis , Melaninas , Filogenia , Pigmentação , Síncrotrons , Espectroscopia por Absorção de Raios X
7.
Worldviews Evid Based Nurs ; 14(6): 447-454, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806495

RESUMO

BACKGROUND: Uptake of proven interventions requires dedicated resources that may only result in local implementation, thus precluding international practice change. We explored international uptake through online dissemination of the fever, sugar, and swallow (FeSS) protocols from the Quality in Acute Stroke Care (QASC) trial, which showed decreased death and dependency by 15.7% 90-day poststroke. AIMS: To identify: (a) the clinical discipline of healthcare professionals who downloaded the QASC resources; (b) the purpose for downloading; (c) successful implementation of any or all the FeSS protocols; (d) barriers to implementation; and (e) associations with self-reported successful implementation. METHODS: A cross-sectional, online survey of those who downloaded the QASC resources between October 2011 and August 2013. Associations between implementation and participant characteristics were determined. RESULTS: One-hundred and fifty-nine people from 21 countries participated. Nurses were the largest group to download the resources (n = 54, 38%), with the primary purpose to inform clinical practice (n = 97, 64%). Less than half (n = 77, 48%) downloaded, and less than a quarter (n = 38, 24%) attempted to implement all three protocols. Of those personally involved in implementation (n = 50) half reported doing so successfully for one or more protocols (n = 27, 54%) with 10 (20%) reporting successful implementation of all three protocols. Only about half (n = 13, 48%) used the proven implementation strategy with about one-third (n = 10, 29%) confirming successful uptake via audit. Implementation barriers were potential increase in nursing workload (n = 28, 56%) and lack of medical staff engagement (n = 27, 53%). Higher autonomy was associated with greater likelihood of implementation of all three protocols (p = .038). LINKING EVIDENCE TO ACTION: The QASC intervention required use of all three protocols. However, less than half downloaded them all and implementation was not guided by the proven implementation strategy. While encouraging that these resources were being used to drive practice change, piecemeal implementation of a proven intervention is unlikely to improve patient outcomes.


Assuntos
Prática Clínica Baseada em Evidências/tendências , Internacionalidade , Qualidade da Assistência à Saúde/normas , Acidente Vascular Cerebral/terapia , Estudos Transversais , Prática Clínica Baseada em Evidências/estatística & dados numéricos , Febre/terapia , Humanos , Hiperglicemia/enfermagem , Morbidade , Qualidade da Assistência à Saúde/estatística & dados numéricos , Qualidade da Assistência à Saúde/tendências , Acidente Vascular Cerebral/mortalidade , Inquéritos e Questionários
9.
PLoS Biol ; 9(11): e1001200, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22110404

RESUMO

Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.


Assuntos
Fósseis , Mariposas , Nanoestruturas/ultraestrutura , Pigmentação , Animais , Evolução Biológica , Microscopia Eletrônica de Varredura , Mariposas/ultraestrutura , Nanoestruturas/química , Filogenia , Asas de Animais/ultraestrutura
10.
Biol Lett ; 10(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25009243

RESUMO

Eurypterids are a group of extinct chelicerates that ranged for over 200 Myr from the Ordovician to the Permian. Gigantism is common in the group; about 50% of families include taxa over 0.8 m in length. Among these were the pterygotids (Pterygotidae), which reached lengths of over 2 m and were the largest arthropods that ever lived. They have been interpreted as highly mobile visual predators on the basis of their large size, enlarged, robust chelicerae and forward-facing compound eyes. Here, we test this interpretation by reconstructing the visual capability of Acutiramus cummingsi (Pterygotidae) and comparing it with that of the smaller Eurypterus sp. (Eurypteridae), which lacked enlarged chelicerae, and other arthropods of similar geologic age. In A. cummingsi, there is no area of lenses differentiated to provide increased visual acuity, and the interommatidial angles (IOA) do not fall within the range of high-level modern arthropod predators. Our results show that the visual acuity of A. cummingsi is poor compared with that of co-occurring Eurypterus sp. The ecological role of pterygotids may have been as predators on thin-shelled and soft-bodied prey, perhaps in low-light conditions or at night.


Assuntos
Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/anatomia & histologia , Fósseis , Acuidade Visual , Animais , Ecologia , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA