Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(44): e2210150119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282916

RESUMO

APOL1 risk variants are associated with increased risk of kidney disease in patients of African ancestry, but not all individuals with the APOL1 high-risk genotype develop kidney disease. As APOL1 gene expression correlates closely with the degree of kidney cell injury in both cell and animal models, the mechanisms regulating APOL1 expression may be critical determinants of risk allele penetrance. The APOL1 messenger RNA includes Alu elements at the 3' untranslated region that can form a double-stranded RNA structure (Alu-dsRNA) susceptible to posttranscriptional adenosine deaminase acting on RNA (ADAR)-mediated adenosine-to-inosine (A-to-I) editing, potentially impacting gene expression. We studied the effects of ADAR expression and A-to-I editing on APOL1 levels in podocytes, human kidney tissue, and a transgenic APOL1 mouse model. In interferon-γ (IFN-γ)-stimulated human podocytes, ADAR down-regulates APOL1 by preventing melanoma differentiation-associated protein 5 (MDA5) recognition of dsRNA and the subsequent type I interferon (IFN-I) response. Knockdown experiments showed that recognition of APOL1 messenger RNA itself is an important contributor to the MDA5-driven IFN-I response. Mathematical modeling suggests that the IFN-ADAR-APOL1 network functions as an incoherent feed-forward loop, a biological circuit capable of generating fast, transient responses to stimuli. Glomeruli from human kidney biopsies exhibited widespread editing of APOL1 Alu-dsRNA, while the transgenic mouse model closely replicated the edited sites in humans. APOL1 expression in mice was inversely correlated with Adar1 expression under IFN-γ stimuli, supporting the idea that ADAR regulates APOL1 levels in vivo. ADAR-mediated A-to-I editing is an important regulator of APOL1 expression that could impact both penetrance and severity of APOL1-associated kidney disease.


Assuntos
Adenosina Desaminase , Interferon Tipo I , Humanos , Animais , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Edição de RNA , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA de Cadeia Dupla/genética , Regiões 3' não Traduzidas , Apolipoproteína L1/genética , Interferon gama/genética , Interferon gama/metabolismo , RNA Mensageiro/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina/metabolismo , Interferon Tipo I/metabolismo
2.
Kidney Int ; 102(1): 136-148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34929253

RESUMO

Apolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease. With the hypothesis that the pathology driven by the high-risk APOL1 genotype is reflected in alteration of gene expression across the glomerular transcriptome, we compared expression and co-expression profiles of 15,703 genes in 16 Black patients with FSGS at high-risk vs 14 Black patients with a low-risk APOL1 genotype. Expression data from APOL1-inducible HEK293 cells and normal human glomeruli were used to pursue genes and molecular pathways uncovered in these studies. We discovered increased expression of APOL1 and nine other significant differentially expressed genes in high-risk patients. This included stanniocalcin, which has a role in mitochondrial and calcium-related processes along with differential correlations between high- and low-risk APOL1 and metabolism pathway genes. There were similar correlations with extracellular matrix- and immune-related genes, but significant loss of co-expression of mitochondrial genes in high-risk FSGS, and an NF-κB-down regulating gene, NKIRAS1, as the most significant hub gene with strong differential correlations with NDUF family (mitochondrial respiratory genes) and immune-related (JAK-STAT) genes. Thus, differences in mitochondrial gene regulation appear to underlie many differences observed between high- and low-risk Black patients with FSGS.


Assuntos
Apolipoproteína L1 , Glomerulosclerose Segmentar e Focal , Apolipoproteína L1/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Células HEK293 , Humanos , Glomérulos Renais/patologia , Transcriptoma
3.
Am J Hum Genet ; 103(2): 232-244, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057032

RESUMO

Expression quantitative trait loci (eQTL) studies illuminate the genetics of gene expression and, in disease research, can be particularly illuminating when using the tissues directly impacted by the condition. In nephrology, there is a paucity of eQTL studies of human kidney. Here, we used whole-genome sequencing (WGS) and microdissected glomerular (GLOM) and tubulointerstitial (TI) transcriptomes from 187 individuals with nephrotic syndrome (NS) to describe the eQTL landscape in these functionally distinct kidney structures. Using MatrixEQTL, we performed cis-eQTL analysis on GLOM (n = 136) and TI (n = 166). We used the Bayesian "Deterministic Approximation of Posteriors" (DAP) to fine-map these signals, eQTLBMA to discover GLOM- or TI-specific eQTLs, and single-cell RNA-seq data of control kidney tissue to identify the cell type specificity of significant eQTLs. We integrated eQTL data with an IgA Nephropathy (IgAN) GWAS to perform a transcriptome-wide association study (TWAS). We discovered 894 GLOM eQTLs and 1,767 TI eQTLs at FDR < 0.05. 14% and 19% of GLOM and TI eQTLs, respectively, had >1 independent signal associated with its expression. 12% and 26% of eQTLs were GLOM specific and TI specific, respectively. GLOM eQTLs were most significantly enriched in podocyte transcripts and TI eQTLs in proximal tubules. The IgAN TWAS identified significant GLOM and TI genes, primarily at the HLA region. In this study, we discovered GLOM and TI eQTLs, identified those that were tissue specific, deconvoluted them into cell-specific signals, and used them to characterize known GWAS alleles. These data are available for browsing and download via our eQTL browser, "nephQTL."


Assuntos
Rim/patologia , Síndrome Nefrótica/genética , Locos de Características Quantitativas/genética , Adolescente , Adulto , Alelos , Teorema de Bayes , Feminino , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Adulto Jovem
4.
Pediatr Nephrol ; 36(9): 2747-2757, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33646395

RESUMO

BACKGROUND: The G1 and G2 alleles of apolipoprotein L1 (APOL1) are common in the Black population and associated with increased risk of focal segmental glomerulosclerosis (FSGS). The molecular mechanisms linking APOL1 risk variants with FSGS are not clearly understood, and APOL1's natural absence in laboratory animals makes studying its pathobiology challenging. METHODS: In a cohort of 90 Black patients with either FSGS or minimal change disease (MCD) enrolled in the Nephrotic Syndrome Study Network (58% pediatric onset), we used kidney biopsy traits as an intermediate outcome to help illuminate tissue-based consequences of APOL1 risk variants and expression. We tested associations between APOL1 risk alleles or glomerular APOL1 mRNA expression and 83 light- or electron-microscopy traits measuring structural and cellular kidney changes. RESULTS: Under both recessive and dominant models in the FSGS patient subgroup (61%), APOL1 risk variants were significantly correlated (defined as FDR <0.1) with decreased global mesangial hypercellularity, decreased condensation of cytoskeleton, and increased tubular microcysts. No significant correlations were detected in MCD cohort. Independent of risk alleles, glomerular APOL1 expression in FSGS patients was not correlated with morphologic features. CONCLUSIONS: While APOL1-associated FSGS is associated with two risk alleles, both one and two risk alleles are associated with cellular/tissue changes in this study of FSGS patients. Our lack of discovery of a large group of tissue differences in FSGS and no significant difference in MCD may be due to the lack of power but also supports investigating whether machine learning methods may more sensitively detect APOL1-associated changes.


Assuntos
Apolipoproteína L1/genética , Glomerulosclerose Segmentar e Focal , Alelos , Genótipo , Glomerulosclerose Segmentar e Focal/genética , Humanos , Síndrome Nefrótica/genética
5.
Kidney Int ; 98(5): 1308-1322, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32554042

RESUMO

To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P=4.94E-20, odds ratio (OR) =1.90) and TNFSF15 (rs6478109, P=2.54E-8, OR=0.72) regions achieved genome-wide significance and were replicated in Korean, South Asian and African populations. Trans-ethnic meta-analyses including Japanese, Korean, South Asian, African, European, Hispanic and Maghrebian populations confirmed the significant associations of variants in NPHS1-KIRREL2 (Pmeta=6.71E-28, OR=1.88) and TNFSF15 (Pmeta=5.40E-11, OR=1.33) loci. Analysis of the NPHS1 risk alleles with glomerular NPHS1 mRNA expression from the same person revealed allele specific expression with significantly lower expression of the transcript derived from the risk haplotype (Wilcox test p=9.3E-4). Because rare pathogenic variants in NPHS1 cause congenital nephrotic syndrome of the Finnish type (CNSF), the present study provides further evidence that variation along the allele frequency spectrum in the same gene can cause or contribute to both a rare monogenic disease (CNSF) and a more complex, polygenic disease (SSNS).


Assuntos
Síndrome Nefrótica , Alelos , Criança , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Proteínas de Membrana , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Esteroides , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
6.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30760496

RESUMO

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

7.
medRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562757

RESUMO

In genetic disease, an accurate expression landscape of disease genes and faithful animal models will enable precise genetic diagnoses and therapeutic discoveries, respectively. We previously discovered that variants in NOS1AP , encoding nitric oxide synthase 1 (NOS1) adaptor protein, cause monogenic nephrotic syndrome (NS). Here, we determined that an intergenic splice product of N OS1AP / Nos1ap and neighboring C1orf226/Gm7694 , which precludes NOS1 binding, is the predominant isoform in mammalian kidney transcriptional and proteomic data. Gm7694 -/- mice, whose allele exclusively disrupts the intergenic product, developed NS phenotypes. In two human NS subjects, we identified causative NOS1AP splice variants, including one predicted to abrogate intergenic splicing but initially misclassified as benign based on the canonical transcript. Finally, by modifying genetic background, we generated a faithful mouse model of NOS1AP -associated NS, which responded to anti-proteinuric treatment. This study highlights the importance of intergenic splicing and a potential treatment avenue in a mendelian disorder.

8.
Nat Commun ; 14(1): 2229, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076491

RESUMO

Expression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an "integrative prior" for Bayesian statistical fine-mapping. The use of an integrative prior resulted in higher resolution eQTLs illustrated by (1) smaller numbers of variants in credible sets with greater confidence, (2) increased enrichment of partitioned heritability for GWAS of two kidney traits, (3) an increased number of variants colocalized with the GWAS loci, and (4) enrichment of computationally predicted functional regulatory variants. A subset of variants and genes were validated experimentally in vitro and using a Drosophila nephrocyte model. More broadly, this study demonstrates that tissue-specific eQTL maps informed by single-nucleus open chromatin data have enhanced utility for diverse downstream analyses.


Assuntos
Estudo de Associação Genômica Ampla , Nefropatias , Humanos , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Nefropatias/genética , Genômica , Cromatina/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
9.
Nat Commun ; 14(1): 2481, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120605

RESUMO

Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome Nefrótica , Humanos , Criança , Síndrome Nefrótica/genética , Predisposição Genética para Doença , Haplótipos , Fatores de Risco , Polimorfismo de Nucleotídeo Único
10.
Nat Commun ; 14(1): 7836, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036523

RESUMO

African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.


Assuntos
Glomerulosclerose Segmentar e Focal , Humanos , Glomerulosclerose Segmentar e Focal/genética , Apolipoproteína L1/genética , Predisposição Genética para Doença , Fatores de Risco , Genótipo , Apolipoproteínas/genética
11.
medRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577628

RESUMO

Black Americans have a significantly higher risk of developing chronic kidney disease (CKD), especially focal segmental glomerulosclerosis (FSGS), than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of Black Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1 -associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.

12.
Nat Genet ; 53(5): 630-637, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958779

RESUMO

The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.


Assuntos
Predisposição Genética para Doença , Genômica , Hipertensão/genética , Rim/patologia , Processamento Alternativo/genética , Pressão Sanguínea/genética , Metilação de DNA/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA