Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 60(7): 1953-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19346243

RESUMO

The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Fósforo/metabolismo , Raízes de Plantas/genética , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Cruzamento , Cruzamentos Genéticos , Raízes de Plantas/metabolismo , Brotos de Planta/genética
2.
Plant Physiol ; 146(4): 1707-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281414

RESUMO

Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F(1) hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40%). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14% to 55% of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca(2+) and Mg(2+) uptake and homeostasis at the molecular level.


Assuntos
Brassica/metabolismo , Cálcio/metabolismo , Magnésio/metabolismo , Brotos de Planta/metabolismo , Biomassa , Brassica/genética , Genes de Plantas , Ligação Genética , Locos de Características Quantitativas
3.
Proc Nutr Soc ; 65(2): 169-81, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672078

RESUMO

Se is an essential element for animals. In man low dietary Se intakes are associated with health disorders including oxidative stress-related conditions, reduced fertility and immune functions and an increased risk of cancers. Although the reference nutrient intakes for adult females and males in the UK are 60 and 75 microg Se/d respectively, dietary Se intakes in the UK have declined from >60 microg Se/d in the 1970s to 35 microg Se/d in the 1990s, with a concomitant decline in human Se status. This decline in Se intake and status has been attributed primarily to the replacement of milling wheat having high levels of grain Se and grown on high-Se soils in North America with UK-sourced wheat having low levels of grain Se and grown on low-Se soils. An immediate solution to low dietary Se intake and status is to enrich UK-grown food crops using Se fertilisers (agronomic biofortification). Such a strategy has been adopted with success in Finland. It may also be possible to enrich food crops in the longer term by selecting or breeding crop varieties with enhanced Se-accumulation characteristics (genetic biofortification). The present paper will review the potential for biofortification of UK food crops with Se.


Assuntos
Produtos Agrícolas/química , Fertilizantes , Alimentos Fortificados , Selênio/administração & dosagem , Humanos , Política Nutricional , Necessidades Nutricionais , Estado Nutricional , Plantas Geneticamente Modificadas , Selênio/deficiência , Solo/análise , Reino Unido
4.
J Exp Bot ; 54(386): 1431-46, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12709490

RESUMO

This study describes the variation in the mean relative shoot Ca content within the angiosperms at the ordinal level. Data were derived from studies in the literature in which the shoot Ca content of two or more species had been compared, and from a hydroponic experiment in which plants were selected to represent the relative number of species within each angiosperm order. Across all angiosperms, most of the variation in shoot Ca content occurred at and above the level of the order. Relative shoot Ca contents and variances correlated between literature and experimental data. In general, orders of commelinoid monocots had lower Ca contents than other monocot or eudicot orders. These results are used to illustrate how physiological and ecological hypotheses can be formulated using literature data.


Assuntos
Cálcio/metabolismo , Magnoliopsida/metabolismo , Brotos de Planta/metabolismo , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
5.
J Exp Bot ; 55(396): 321-36, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14739259

RESUMO

The calcium (Ca) concentration of plant shoot tissues varies systematically between angiosperm orders. The phylogenetic variation in the shoot concentration of other mineral nutrients has not yet been described at an ordinal level. The aims of this study were (1) to quantify the shoot mineral concentration of different angiosperm orders, (2) to partition the phylogenetic variation in shoot mineral concentration between and within orders, (3) to determine if the shoot concentration of different minerals are correlated across angiosperm species, and (4) to compare experimental data with published ecological survey data on 81 species sampled from their natural habitats. Species, selected pro rata from different angiosperm orders, were grown in a hydroponic system under a constant external nutrient regime. Shoots of 117 species were sampled during vegetative growth. Significant variation in shoot carbon (C), calcium (Ca), potassium (K), and magnesium (Mg) concentration occurred between angiosperm orders. There was no evidence for systematic differences in shoot phosphorus (P) or organic-nitrogen (N) concentration between orders. At a species level, there were strong positive correlations between shoot Ca and Mg concentration, between shoot P and organic-N concentration, and between shoot K concentration and shoot fresh weight:dry weight ratio. Shoot C and cation concentration correlated negatively at a species level. Species within the Poales and the Caryophyllales had distinct shoot mineralogies in both the designed experiment and in the ecological survey.


Assuntos
Cálcio/metabolismo , Variação Genética , Magnoliopsida/genética , Brotos de Planta/genética , Carbono/metabolismo , Magnésio/metabolismo , Magnoliopsida/classificação , Filogenia , Brotos de Planta/metabolismo , Potássio/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA