Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Biol ; 21(3): e3002034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888606

RESUMO

The stress-responsive transcription factor EB (TFEB) is a master controller of lysosomal biogenesis and autophagy and plays a major role in several cancer-associated diseases. TFEB is regulated at the posttranslational level by the nutrient-sensitive kinase complex mTORC1. However, little is known about the regulation of TFEB transcription. Here, through integrative genomic approaches, we identify the immediate-early gene EGR1 as a positive transcriptional regulator of TFEB expression in human cells and demonstrate that, in the absence of EGR1, TFEB-mediated transcriptional response to starvation is impaired. Remarkably, both genetic and pharmacological inhibition of EGR1, using the MEK1/2 inhibitor Trametinib, significantly reduced the proliferation of 2D and 3D cultures of cells displaying constitutive activation of TFEB, including those from a patient with Birt-Hogg-Dubé (BHD) syndrome, a TFEB-driven inherited cancer condition. Overall, we uncover an additional layer of TFEB regulation consisting in modulating its transcription via EGR1 and propose that interfering with the EGR1-TFEB axis may represent a therapeutic strategy to counteract constitutive TFEB activation in cancer-associated conditions.


Assuntos
Autofagia , Lisossomos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Proliferação de Células/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
2.
Nat Rev Mol Cell Biol ; 14(5): 283-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23609508

RESUMO

For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.


Assuntos
Lisossomos/fisiologia , Animais , Metabolismo Energético , Humanos , Lisossomos/metabolismo , Transdução de Sinais
3.
Annu Rev Neurosci ; 39: 277-95, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090953

RESUMO

Recent studies of autophagic and lysosomal pathways have significantly changed our understanding of lysosomes; once thought to be simple degradative and recycling centers, lysosomes are now known to be organelles capable of influencing signal transduction, via the mammalian target of rapamycin complex 1 (mTORC1), and regulating gene expression, via transcription factor EB (TFEB) and other transcription factors. These pathways are particularly relevant to maintaining brain homeostasis, as dysfunction of the endolysosomal and autophagic pathways has been associated with common neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's, and lysosomal storage disorders, a group of inherited disorders characterized by the intralysosomal buildup of partially degraded metabolites. This review focuses on the cellular biology of lysosomes and discusses the possible mechanisms by which disruption of their function contributes to neurodegeneration. We also review and discuss how targeting TFEB and lysosomes may offer innovative therapeutic approaches for treating a wide range of neurological conditions.


Assuntos
Autofagia/fisiologia , Encefalopatias/fisiopatologia , Encéfalo/fisiopatologia , Lisossomos/metabolismo , Animais , Encéfalo/metabolismo , Encefalopatias/metabolismo , Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos
4.
Cytometry A ; 105(5): 323-331, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420869

RESUMO

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.


Assuntos
Lisossomos , Lisossomos/metabolismo , Animais , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Mucopolissacaridose III/genética , Imageamento Quantitativo de Fase
5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162981

RESUMO

Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose I , Flavonoides/farmacologia , Expressão Gênica , Genisteína/farmacologia , Glicosaminoglicanos/metabolismo , Humanos , Quempferóis , Análise de Sequência com Séries de Oligonucleotídeos
6.
Nature ; 528(7581): 272-5, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26595272

RESUMO

Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.


Assuntos
Autofagia/fisiologia , Desenvolvimento Ósseo/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Desenvolvimento Ósseo/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Embrião de Mamíferos , Matriz Extracelular/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771310

RESUMO

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Mucolipidoses/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/genética , Encefalite/metabolismo , Encefalite/patologia , Feminino , Regulação da Expressão Gênica , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Camundongos Knockout , Mucolipidoses/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
8.
PLoS Genet ; 13(1): e1006552, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056084

RESUMO

Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease.


Assuntos
Homeostase , Fenótipo , Proteínas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Transformação Celular Neoplásica , Dano ao DNA , Fibroblastos/metabolismo , Ácido Láctico/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
9.
Bioinformatics ; 34(9): 1498-1505, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29236977

RESUMO

Motivation: Drug repositioning has been proposed as an effective shortcut to drug discovery. The availability of large collections of transcriptional responses to drugs enables computational approaches to drug repositioning directly based on measured molecular effects. Results: We introduce a novel computational methodology for rational drug repositioning, which exploits the transcriptional responses following treatment with small molecule. Specifically, given a therapeutic target gene, a prioritization of potential effective drugs is obtained by assessing their impact on the transcription of genes in the pathway(s) including the target. We performed in silico validation and comparison with a state-of-art technique based on similar principles. We next performed experimental validation in two different real-case drug repositioning scenarios: (i) upregulation of the glutamate-pyruvate transaminase (GPT), which has been shown to induce reduction of oxalate levels in a mouse model of primary hyperoxaluria, and (ii) activation of the transcription factor TFEB, a master regulator of lysosomal biogenesis and autophagy, whose modulation may be beneficial in neurodegenerative disorders. Availability and implementation: A web tool for Gene2drug is freely available at http://gene2drug.tigem.it. An R package is under development and can be obtained from https://github.com/franapoli/gep2pep. Contact: dibernardo@tigem.it. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Reposicionamento de Medicamentos/métodos , Software , Animais , Linhagem Celular , Descoberta de Drogas/métodos , Humanos , Camundongos
10.
Kidney Int ; 89(4): 862-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26994576

RESUMO

Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cistinose/metabolismo , Lisossomos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Linhagem Celular , Núcleo Celular/metabolismo , Cistina/metabolismo , Cistinose/genética , Humanos
11.
EMBO J ; 31(5): 1095-108, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22343943

RESUMO

The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/fisiologia , Lisossomos/fisiologia , Proteínas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Imunoprecipitação , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Complexos Multiproteicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Serina-Treonina Quinases TOR
12.
BMC Bioinformatics ; 16: 279, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334955

RESUMO

BACKGROUND: Transcription factors (TFs) act downstream of the major signalling pathways functioning as master regulators of cell fate. Their activity is tightly regulated at the transcriptional, post-transcriptional and post-translational level. Proteins modifying TF activity are not easily identified by experimental high-throughput methods. RESULTS: We developed a computational strategy, called Differential Multi-Information (DMI), to infer post-translational modulators of a transcription factor from a compendium of gene expression profiles (GEPs). DMI is built on the hypothesis that the modulator of a TF (i.e. kinase/phosphatases), when expressed in the cell, will cause the TF target genes to be co-expressed. On the contrary, when the modulator is not expressed, the TF will be inactive resulting in a loss of co-regulation across its target genes. DMI detects the occurrence of changes in target gene co-regulation for each candidate modulator, using a measure called Multi-Information. We validated the DMI approach on a compendium of 5,372 GEPs showing its predictive ability in correctly identifying kinases regulating the activity of 14 different transcription factors. CONCLUSIONS: DMI can be used in combination with experimental approaches as high-throughput screening to efficiently improve both pathway and target discovery. An on-line web-tool enabling the user to use DMI to identify post-transcriptional modulators of a transcription factor of interest che be found at http://dmi.tigem.it.


Assuntos
Regulação da Expressão Gênica/genética , Processamento de Proteína Pós-Traducional/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais
13.
J Biol Chem ; 289(24): 17054-69, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24770416

RESUMO

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Redes Reguladoras de Genes , Genisteína/farmacologia , Lisossomos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Transporte Ativo do Núcleo Celular , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Lisossomos/metabolismo , Transcrição Gênica
14.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238520

RESUMO

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Assuntos
Calcineurina , Proteínas de Drosophila , Animais , Calcineurina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Mitofagia/genética , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
15.
Sci Adv ; 9(1): eade1694, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608116

RESUMO

Spinal and bulbar muscular atrophy is caused by polyglutamine (polyQ) expansions in androgen receptor (AR), generating gain-of-function toxicity that may involve phosphorylation. Using cellular and animal models, we investigated what kinases and phosphatases target polyQ-expanded AR, whether polyQ expansions modify AR phosphorylation, and how this contributes to neurodegeneration. Mass spectrometry showed that polyQ expansions preserve native phosphorylation and increase phosphorylation at conserved sites controlling AR stability and transactivation. In small-molecule screening, we identified that CDC25/CDK2 signaling could enhance AR phosphorylation, and the calcium-sensitive phosphatase calcineurin had opposite effects. Pharmacologic and genetic manipulation of these kinases and phosphatases modified polyQ-expanded AR function and toxicity in cells, flies, and mice. Ablation of CDK2 reduced AR phosphorylation in the brainstem and restored expression of Myc and other genes involved in DNA damage, senescence, and apoptosis, indicating that the cell cycle-regulated kinase plays more than a bystander role in SBMA-vulnerable postmitotic cells.


Assuntos
Cálcio , Receptores Androgênicos , Camundongos , Animais , Receptores Androgênicos/química , Mutação com Ganho de Função , Quinases Ciclina-Dependentes/genética , Monoéster Fosfórico Hidrolases/genética
16.
Mol Neurobiol ; 59(8): 5000-5023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35665902

RESUMO

The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Microftalmia , Animais , Humanos , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Microftalmia/metabolismo
17.
Nat Commun ; 13(1): 536, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087090

RESUMO

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfofrutoquinase-2/metabolismo , Animais , Autofagia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/metabolismo , Fosfofrutoquinase-2/genética , Regulação para Cima
18.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35929194

RESUMO

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Lipofuscinoses Ceroides Neuronais , Animais , Pré-Escolar , Humanos , Lisossomos/metabolismo , Camundongos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Qualidade de Vida
19.
Int Rev Cell Mol Biol ; 362: 141-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34253294

RESUMO

Lysosomal calcium is emerging as a modulator of autophagy and lysosomal compartment, an obligatory partner to complete the autophagic pathway. A variety of specific signals such as nutrient deprivation or oxidative stress can trigger lysosomal calcium-mediated nuclear translocation of the transcription factor EB (TFEB), a master regulator of global lysosomal function. Also, lysosomal calcium can promote the formation of autophagosome vesicles (AVs) by a mechanism that requires the production of the phosphoinositide PI3P by the VPS34 autophagic complex and the activation of the energy-sensing kinase AMPK. Additionally, lysosomal calcium plays a role in membrane fusion and fission events involved in cellular processes such as endocytic maturation, autophagosome-lysosome fusion, lysosomal exocytosis, and lysosomal reformation upon autophagy completion. Lysosomal calcium-dependent functions are defective in cellular and animal models of the non-selective cation channel TRPML1, whose mutations in humans cause the neurodegenerative lysosomal storage disease mucolipidosis type IV (MLIV). Lysosomal calcium is not only acting as a positive regulator of autophagy, but it is also responsible for turning-off this process through the reactivation of the mTOR kinase during prolonged starvation. More recently, it has been described the role of lysosomal calcium on an elegant sequence of intracellular signaling events such as membrane repair, lysophagy, and lysosomal biogenesis upon the induction of different grades of lysosomal membrane damage. Here, we will discuss these novel findings that re-define the importance of the lysosome and lysosomal calcium signaling at regulating cellular metabolism.


Assuntos
Autofagia , Cálcio/metabolismo , Lisossomos/metabolismo , Animais , Canais de Cálcio/metabolismo , Endossomos/metabolismo , Humanos , Modelos Biológicos
20.
EMBO Mol Med ; 13(2): e12836, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459519

RESUMO

Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doenças Metabólicas , Autofagia , Humanos , Lisossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA