Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33009560

RESUMO

BACKGROUND: Whole genome sequencing (WGS) is increasingly used for Mycobacterium tuberculosis (Mtb) research. Countries with the highest tuberculosis (TB) burden face important challenges to integrate WGS into surveillance and research. METHODS: We assessed the global status of Mtb WGS and developed a 3-week training course coupled with long-term mentoring and WGS infrastructure building. Training focused on genome sequencing, bioinformatics and development of a locally relevant WGS research project. The aim of the long-term mentoring was to support trainees in project implementation and funding acquisition. The focus of WGS infrastructure building was on the DNA extraction process and bioinformatics. FINDINGS: Compared to their TB burden, Asia and Africa are grossly underrepresented in Mtb WGS research. Challenges faced resulted in adaptations to the training, mentoring and infrastructure building. Out-of-date laptop hardware and operating systems were overcome by using online tools and a Galaxy WGS analysis pipeline. A case studies approach created a safe atmosphere for students to formulate and defend opinions. Because quality DNA extraction is paramount for WGS, a biosafety level 3 and general laboratory skill training session were added, use of commercial DNA extraction kits was introduced and a 2-week training in a highly equipped laboratory was combined with a 1-week training in the local setting. INTERPRETATION: By developing and sharing the components of and experiences with a sequencing and bioinformatics training program, we hope to stimulate capacity building programs for Mtb WGS and empower high-burden countries to play an important role in WGS-based TB surveillance and research.


Assuntos
Biologia Computacional , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose/genética , Sequenciamento Completo do Genoma , África/epidemiologia , Ásia/epidemiologia , Efeitos Psicossociais da Doença , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/epidemiologia
2.
J Clin Microbiol ; 60(1): e0064621, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34133895

RESUMO

The next-generation, short-read sequencing technologies that generate comprehensive, whole-genome data with single nucleotide resolution have already advanced tuberculosis diagnosis, treatment, surveillance, and source investigation. Their high costs, tedious and lengthy processes, and large equipment remain major hurdles for research use in high tuberculosis burden countries and implementation into routine care. The portable next-generation sequencing devices developed by Oxford Nanopore Technologies (ONT) are attractive alternatives due to their long-read sequence capability, compact low-cost hardware, and continued improvements in accuracy and throughput. A systematic review of the published literature demonstrated limited uptake of ONT sequencing in tuberculosis research and clinical care. Of the 12 eligible articles presenting ONT sequencing data on at least one Mycobacterium tuberculosis sample, four addressed software development for long-read ONT sequencing data with potential applications for M. tuberculosis. Only eight studies presented results of ONT sequencing of M. tuberculosis, of which five performed whole-genome and three did targeted sequencing. Based on these findings, we summarize the standard processes, reflect on the current limitations of ONT sequencing technology, and the research needed to overcome the main hurdles. The low capital cost, portable nature and continued improvement in the performance of ONT sequencing make it an attractive option for sequencing for research and clinical care, but limited data are available on its application in the tuberculosis field. Important research investment is needed to unleash the full potential of ONT sequencing for tuberculosis research and care.


Assuntos
Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Software
3.
Artigo em Inglês | MEDLINE | ID: mdl-34554081

RESUMO

The definition of a genus has wide-ranging implications both in terms of binomial species names and also evolutionary relationships. In recent years, the definition of the genus Mycobacterium has been debated due to the proposed split of this genus into five new genera (Mycolicibacterium, Mycolicibacter, Mycolicibacillus, Mycobacteroides and an emended Mycobacterium). Since this group of species contains many important obligate and opportunistic pathogens, it is important that any renaming of species does not cause confusion in clinical treatment as outlined by the nomen periculosum rule (56a) of the Prokaryotic Code. In this study, we evaluated the proposed and original genus boundaries for the mycobacteria, to determine if the split into five genera was warranted. By combining multiple approaches for defining genus boundaries (16S rRNA gene similarity, amino acid identity index, average nucleotide identity, alignment fraction and percentage of conserved proteins) we show that the original genus Mycobacterium is strongly supported over the proposed five-way split. Thus, we propose that the original genus label be reapplied to all species within this group, with the proposed five genera potentially used as sub-genus complex names.


Assuntos
Ácidos Graxos , Mycobacterium , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Mycobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Emerg Infect Dis ; 25(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211938

RESUMO

Traditional public health methods for detecting infectious disease transmission, such as contact tracing and molecular epidemiology, are time-consuming and costly. Information and communication technologies, such as global positioning systems, smartphones, and mobile phones, offer opportunities for novel approaches to identifying transmission hotspots. However, mapping the movements of potentially infected persons comes with ethical challenges. During an interdisciplinary meeting of researchers, ethicists, data security specialists, information and communication technology experts, epidemiologists, microbiologists, and others, we arrived at suggestions to mitigate the ethical concerns of movement mapping. These suggestions include a template Data Protection Impact Assessment that follows European Union General Data Protection Regulations.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Ética Médica , Vigilância em Saúde Pública , Vigilância de Evento Sentinela , Telefone Celular , Análise Custo-Benefício , Surtos de Doenças , Sistemas de Informação Geográfica , Humanos , Consentimento Livre e Esclarecido , Vigilância da População , Privacidade , Vigilância em Saúde Pública/métodos , Medição de Risco
5.
J Clin Microbiol ; 57(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092592

RESUMO

We compared cetylpyridinium chloride (CPC), ethanol (ETOH), and OMNIgene.SPUTUM (OMNI) for 28-day storage of sputum at ambient temperature before molecular tuberculosis diagnostics. Three sputum samples were collected from each of 133 smear-positive tuberculosis (TB) patients (399 sputum samples). Each patient's sputum was stored with either CPC, ETOH, or OMNI for 28 days at ambient temperature, with subsequent rpoB amplification targeting a short fragment (81 bp, GeneXpert MTB/RIF [Xpert]) or a long fragment (1,764 bp, in-house nested PCR). For 36 patients, Xpert was also performed at baseline on all 108 fresh sputum samples. After the 28-day storage (D28), Xpert positivity did not significantly differ between storage methods. In contrast, higher positivity for rpoB nested PCR was obtained with OMNI (n = 125, 94%) than with ETOH (n = 114, 85.7%; P = 0.001). Smears with scanty acid-fast bacilli (AFB) had lower rpoB PCR positivity with ETOH storage (n = 10, 41.7%) than with CPC (n = 16, 66.7%; difference, 25%; 95% confidence interval [CI], 3.5 to 46.5; P = 0.031) or OMNI (n = 16, 69.6%; difference, 26.1%; 95% CI, 3.8 to 48.4; P = 0.031), with no difference between CPC and OMNI. Poststorage, the threshold cycle (CT ) values significantly decreased compared to those prestorage with ETOH (difference, -1.1; 95% CI, -1.6 to -0.6; P = 0.0001) but not with CPC (P = 0.915) or OMNI (P = 0.33). For one patient's ETOH- and CPC-stored specimens with a CT of <10, Xpert gave results of rifampin false resistant at D28, which was resolved by repeating Xpert on a 1/100 diluted specimen. In conclusion, 28-day storage of sputum in OMNI, CPC, or ETOH at ambient temperature does not impact short-fragment PCR (Xpert), including for low smear grades. However, for long-fragment PCR, ETOH yielded a lower PCR positivity for low smear grades, while the performance of OMNI and CPC was excellent for all smear grades. (The study has been registered at ClinicalTrials.gov under registration number NCT02744469.).


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Manejo de Espécimes/métodos , Escarro/microbiologia , Tuberculose/diagnóstico , Cetilpiridínio/química , Etanol/química , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/genética , Fatores de Tempo
6.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439984

RESUMO

Since 2000, cases of the neglected tropical disease Buruli ulcer, caused by infection with Mycobacterium ulcerans, have increased 100-fold around Melbourne (population 4.4 million), the capital of Victoria, in temperate southeastern Australia. The reasons for this increase are unclear. Here, we used whole-genome sequence comparisons of 178 M. ulcerans isolates obtained primarily from human clinical specimens, spanning 70 years, to model the population dynamics of this pathogen from this region. Using phylogeographic and advanced Bayesian phylogenetic approaches, we found that there has been a migration of the pathogen from the east end of the state, beginning in the 1980s, 300 km west to the major human population center around Melbourne. This move was then followed by a significant increase in M. ulcerans population size. These analyses inform our thinking around Buruli ulcer transmission and control, indicating that M. ulcerans is introduced to a new environment and then expands, rather than it being from the awakening of a quiescent pathogen reservoir.IMPORTANCE Buruli ulcer is a destructive skin and soft tissue infection caused by Mycobacterium ulcerans and is characterized by progressive skin ulceration, which can lead to permanent disfigurement and long-term disability. Despite the majority of disease burden occurring in regions of West and central Africa, Buruli ulcer is also becoming increasingly common in southeastern Australia. Major impediments to controlling disease spread are incomplete understandings of the environmental reservoirs and modes of transmission of M. ulcerans The significance of our research is that we used genomics to assess the population structure of this pathogen at the Australian continental scale. We have then reconstructed a historical bacterial spread and modeled demographic dynamics to reveal bacterial population expansion across southeastern Australia. These findings provide explanations for the observed epidemiological trends with Buruli ulcer and suggest possible management to control disease spread.


Assuntos
Úlcera de Buruli/epidemiologia , Genoma Bacteriano , Mycobacterium ulcerans/fisiologia , Teorema de Bayes , Úlcera de Buruli/microbiologia , Genômica , Humanos , Incidência , Mycobacterium ulcerans/genética , Filogenia , Filogeografia , Vitória/epidemiologia , Sequenciamento Completo do Genoma
8.
J Antimicrob Chemother ; 72(3): 684-690, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031270

RESUMO

Objectives: Resistance-associated variants (RAVs) in Rv0678 , a regulator of the MmpS5-MmpL5 efflux pump, have been shown to lead to increased MICs of bedaquiline (2- to 8- fold) and clofazimine (2- to 4-fold). The prevalence of these Rv0678 RAVs in clinical isolates and their impact on treatment outcomes are important factors to take into account in bedaquiline treatment guidelines. Methods: Baseline isolates from two bedaquiline MDR-TB clinical trials were sequenced for Rv0678 RAVs and corresponding bedaquiline MICs were determined on 7H11 agar. Rv0678 RAVs were also investigated in non-MDR-TB sequences of a population-based cohort. Results: Rv0678 RAVs were identified in 23/347 (6.3%) of MDR-TB baseline isolates. Surprisingly, bedaquiline MICs for these isolates were high (> 0.24 mg/L, n = 8), normal (0.03-0.24 mg/L, n = 11) or low (< 0.03 mg/L, n = 4). A variant at position -11 in the intergenic region mmpS5 - Rv0678 was identified in 39 isolates (11.3%) and appeared to increase the susceptibility to bedaquiline. In non-MDR-TB isolates, the frequency of Rv0678 RAVs was lower (6/852 or 0.7%). Competition experiments suggested that rifampicin was not the drug selecting for Rv0678 RAVs. Conclusions: RAVs in Rv0678 occur more frequently in MDR-TB patients than previously anticipated, are not associated with prior use of bedaquiline or clofazimine, and in the majority of cases do not lead to bedaquiline MICs above the provisional breakpoint (0.24 mg/L). Their origin remains unknown. Given the variety of RAVs in Rv0678 and their variable effects on the MIC, only phenotypic drug-susceptibility methods can currently be used to assess bedaquiline susceptibility.


Assuntos
Antituberculosos/farmacologia , Clofazimina/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Anti-Inflamatórios/farmacologia , Antibióticos Antituberculose/uso terapêutico , Antituberculosos/uso terapêutico , Ensaios Clínicos como Assunto , Clofazimina/uso terapêutico , Diarilquinolinas/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Prevalência , Rifampina/uso terapêutico , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
9.
J Virol ; 89(22): 11457-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339063

RESUMO

UNLABELLED: Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. IMPORTANCE: The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by HIV-1 and is now used in combination antiretroviral therapy. Treatment failure with drug-resistant virus is particularly interesting because it tends to be rare, with lack of sensitivity usually associated with the presence of CXCR4-using virus (CXCR4 is the main alternative coreceptor HIV-1 uses, in addition to CD4). We analyzed envelope sequences from HIV-1, obtained from 20 patients who enrolled in maraviroc clinical trials and experienced treatment failure, without detection of CXCR4-using virus. Evolutionary analysis was employed to identify molecular changes that confer maraviroc resistance. We found that in these individuals, resistant viruses form a distinct population that evolved once and was successful as a result of drug pressure. Further evolutionary analysis placed the complex network of interdependent mutational changes into functional groups that help explain the impediments to the emergence of maraviroc-associated R5 drug resistance.


Assuntos
Antagonistas dos Receptores CCR5/uso terapêutico , Cicloexanos/uso terapêutico , Farmacorresistência Viral/genética , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Receptores CCR5/metabolismo , Triazóis/uso terapêutico , Sequência de Aminoácidos , Sequência de Bases , Ensaios Clínicos como Assunto , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Maraviroc , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores CXCR4/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transdução de Sinais/genética , Falha de Tratamento , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética
10.
BMC Infect Dis ; 16: 371, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495002

RESUMO

BACKGROUND: In the context of advanced immunosuppression, M. tuberculosis is known to cause detectable mycobacteremia. However, little is known about the intra-patient mycobacterial microevolution and the direction of seeding between the sputum and blood compartments. METHODS: From a diagnostic study of HIV-infected TB patients, 51 pairs of concurrent blood and sputum M. tuberculosis isolates from the same patient were available. In a previous analysis, we identified a subset with genotypic concordance, based on spoligotyping and 24 locus MIRU-VNTR. These paired isolates with identical genotypes were analyzed by whole genome sequencing and phylogenetic analysis. RESULTS: Of the 25 concordant pairs (49 % of the 51 paired isolates), 15 (60 %) remained viable for extraction of high quality DNA for whole genome sequencing. Two patient pairs were excluded due to poor quality sequence reads. The median CD4 cell count was 32 (IQR; 16-101)/mm(3) and ten (77 %) patients were on ART. No drug resistance mutations were identified in any of the sequences analyzed. Three (23.1 %) of 13 patients had SNPs separating paired isolates from blood and sputum compartments, indicating evidence of microevolution. Using a phylogenetic approach to identify the ancestral compartment, in two (15 %) patients the blood isolate was ancestral to the sputum isolate, in one (8 %) it was the opposite, and ten (77 %) of the pairs were identical. CONCLUSIONS: Among HIV-infected patients with poor cellular immunity, infection with multiple strains of M. tuberculosis was found in half of the patients. In those patients with identical strains, whole genome sequencing indicated that M. tuberculosis intra-patient microevolution does occur in a few patients, yet did not reveal a consistent direction of spread between sputum and blood. This suggests that these compartments are highly connected and potentially seed each other repeatedly.


Assuntos
Sangue/microbiologia , Evolução Molecular , Infecções por HIV/microbiologia , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Adulto , Técnicas de Tipagem Bacteriana/métodos , Sangue/virologia , Feminino , Genoma Bacteriano , Genótipo , Infecções por HIV/complicações , HIV-1 , Humanos , Sequências Repetitivas Dispersas , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Tuberculose/complicações , Adulto Jovem
11.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739117

RESUMO

The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.


Assuntos
Antibacterianos , Microbiota , Boca , Humanos , Boca/microbiologia , Antibacterianos/farmacologia , História Antiga , Dieta , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , História Medieval , História do Século XVII , História do Século XVIII , História do Século XVI
12.
NPJ Antimicrob Resist ; 2(1): 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036800

RESUMO

Trimethoprim is recommended as a first-line treatment of urinary tract infections (UTIs) in the UK. In 2018, 31.4% of Escherichia coli isolated from UTIs in England were trimethoprim-resistant, leading to overreliance on other first and second-line antibiotics. Here, we assessed whether, in principle, prior selection with trimethoprim results in collateral effects to other antibiotics recommended for the treatment of UTIs. As collateral effects, we considered changes in susceptibility, mutation-selection window and population establishment probability. We selected 10 trimethoprim-resistant derivatives from three clinical isolates of uropathogenic Escherichia coli. We found that mutations conferring trimethoprim resistance did not have any collateral effects on fosfomycin. In contrast, resistance to trimethoprim resulted in decreased susceptibility (collateral resistance) to nitrofurantoin, below the clinical breakpoint and narrowed the mutation-selection window, thereby reducing the maximum concentration for selection of nitrofurantoin resistance mutations. Our analyses demonstrate that multiple collateral responses should be accounted for when predicting and optimising antibiotic use, limiting future antimicrobial resistance emergence.

13.
Microbiol Spectr ; 12(8): e0381623, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38874407

RESUMO

Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE: We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Humanos , Tuberculose/microbiologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/química , Virulência/genética , Mutação , Genoma Bacteriano/genética , Modelos Moleculares
14.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38585972

RESUMO

Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety of methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. To quantify sources of bias and error related to common pan-genome analysis approaches, we evaluated different approaches applied to curated collection of 151 Mycobacterium tuberculosis ( Mtb ) isolates. Mtb is characterized by its clonal evolution, absence of horizontal gene transfer, and limited accessory genome, making it an ideal test case for this study. Using a state-of-the-art graph-genome approach, we found that a majority of the structural variation observed in Mtb originates from rearrangement, deletion, and duplication of redundant nucleotide sequences. In contrast, we found that pan-genome analyses that focus on comparison of coding sequences (at the amino acid level) can yield surprisingly variable results, driven by differences in assembly quality and the softwares used. Upon closer inspection, we found that coding sequence annotation discrepancies were a major contributor to inflated Mtb accessory genome estimates. To address this, we developed panqc, a software that detects annotation discrepancies and collapses nucleotide redundancy in pan-genome estimates. When applied to Mtb and E. coli pan-genomes, panqc exposed distinct biases influenced by the genomic diversity of the population studied. Our findings underscore the need for careful methodological selection and quality control to accurately map the evolutionary dynamics of a bacterial species.

15.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016539

RESUMO

Species belonging to the Mycobacterium kansasii complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species M. kansasii (sensu stricto), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC. Many genomic aspects of the MKC that relate to these broad phenotypes are not well elucidated. Here, we performed genomic analyses from a collection of 665 MKC strains, isolated from environmental, animal and human sources. We inferred the MKC pangenome, mobilome, resistome, virulome and defence systems and show that the MKC species harbours unique and shared genomic signatures. High frequency of presence of prophages and different types of defence systems were observed. We found that the M. kansasii species splits into four lineages, of which three are lowly represented and mainly in Brazil, while one lineage is dominant and globally spread. Moreover, we show that four sub-lineages of this most distributed M. kansasii lineage emerged during the twentieth century. Further analysis of the M. kansasii genomes revealed almost 300 regions of difference contributing to genomic diversity, as well as fixed mutations that may explain the M. kansasii's increased virulence and drug resistance.


Assuntos
Genoma Bacteriano , Genômica , Infecções por Mycobacterium não Tuberculosas , Mycobacterium kansasii , Filogenia , Mycobacterium kansasii/genética , Mycobacterium kansasii/classificação , Mycobacterium kansasii/isolamento & purificação , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Animais , Virulência/genética
17.
Sci Rep ; 13(1): 11368, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443186

RESUMO

Bacterial strain-types in the Mycobacterium tuberculosis complex underlie tuberculosis disease, and have been associated with drug resistance, transmissibility, virulence, and host-pathogen interactions. Spoligotyping was developed as a molecular genotyping technique used to determine strain-types, though recent advances in whole genome sequencing (WGS) technology have led to their characterization using SNP-based sub-lineage nomenclature. Notwithstanding, spoligotyping remains an important tool and there is a need to study the congruence between spoligotyping-based and SNP-based sub-lineage assignation. To achieve this, an in silico spoligotype prediction method ("Spolpred2") was developed and integrated into TB-Profiler. Lineage and spoligotype predictions were generated for > 28 k isolates and the overlap between strain-types was characterized. Major spoligotype families detected were Beijing (25.6%), T (18.6%), LAM (13.1%), CAS (9.4%), and EAI (8.3%), and these broadly followed known geographic distributions. Most spoligotypes were perfectly correlated with the main MTBC lineages (L1-L7, plus animal). Conversely, at lower levels of the sub-lineage system, the relationship breaks down, with only 65% of spoligotypes being perfectly associated with a sub-lineage at the second or subsequent levels of the hierarchy. Our work supports the use of spoligotyping (membrane or WGS-based) for low-resolution surveillance, and WGS or SNP-based systems for higher-resolution studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Técnicas de Tipagem Bacteriana , Resistência a Medicamentos , Pequim , Genótipo
18.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750750

RESUMO

The spread of multidrug-resistant tuberculosis (MDR-TB) is a growing problem in many countries worldwide. Resistance to one of the primary first-line drugs, rifampicin, is caused by mutations in the Mycobacterium tuberculosis rpoB gene. So-called borderline rpoB mutations confer low-level resistance, in contrast to more common rpoB mutations which confer high-level resistance. While some borderline mutations show lower fitness in vitro than common mutations, their in vivo fitness is currently unknown. We used a dataset of 394 whole genome sequenced MDR-TB isolates from Bangladesh, representing around 44 % of notified MDR-TB cases over 6 years, to look at differences in transmission clustering between isolates with borderline rpoB mutations and those with common rpoB mutations. We found a relatively low percentage of transmission clustering in the dataset (34.8 %) but no difference in clustering between different types of rpoB mutations. Compensatory mutations in rpoA, rpoB, and rpoC were associated with higher levels of transmission clustering as were lineages two, three, and four relative to lineage one. Young people as well as patients with high sputum smear positive TB were more likely to be in a transmission cluster. Our findings show that although borderline rpoB mutations have lower in vitro growth potential this does not translate into lower transmission potential or in vivo fitness. Proper detection of these mutations is crucial to ensure they do not go unnoticed and spread MDR-TB within communities.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Bangladesh/epidemiologia , Mutação , Rifampina/farmacologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética
19.
Infect Genet Evol ; 116: 105530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008242

RESUMO

BACKGROUND: Understanding the transmission dynamics of Mycobacterium tuberculosis (Mtb) could benefit the design of tuberculosis (TB) prevention and control strategies for refugee populations. Whole Genome Sequencing (WGS) has not yet been used to document the Mtb transmission dynamics among refugees in Ethiopia. We applied WGS to accurately identify transmission clusters and Mtb lineages among TB cases in refugee camps in Ethiopia. METHOD AND DESIGN: We conducted a cross-sectional study of 610 refugees in refugee camps in Ethiopia presenting with symptoms of TB. WGS data of 67 isolates was analyzed using the Maximum Accessible Genome for Mtb Analysis (MAGMA) pipeline; iTol and FigTree were used to visualize phylogenetic trees, lineages, and the presence of transmission clusters. RESULTS: Mtb culture-positive refugees originated from South Sudan (52/67, 77.6%), Somalia (9/67, 13.4%). Eritrea (4/67, 6%), and Sudan (2/67, 3%). The majority (52, 77.6%) of the isolates belonged to Mtb lineage (L) 3, and one L9 was identified from a Somalian refugee. The vast majority (82%) of the isolates were pan-susceptible Mtb, and none were multi-drug-resistant (MDR)-TB. Based on the 5-single nucleotide polymorphisms cutoff, we identified eight potential transmission clusters containing 23.9% of the isolates. Contact investigation confirmed epidemiological links with either family or social interaction within the refugee camps or with neighboring refugee camps. CONCLUSION: Four lineages (L1, L3, L4, and L9) were identified, with the majority of strains being L3, reflecting the Mtb L3 dominance in South Sudan, where the majority of refugees originated from. Recent transmission among refugees was relatively low (24%), likely due to the short study period. The improved understanding of the Mtb transmission dynamics using WGS in refugee camps could assist in designing effective TB control programs for refugees.


Assuntos
Mycobacterium tuberculosis , Refugiados , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Etiópia/epidemiologia , Estudos Transversais , Filogenia , Campos de Refugiados , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Genômica , Antituberculosos/farmacologia
20.
BMC Evol Biol ; 12: 227, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181696

RESUMO

BACKGROUND: The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities. RESULTS: To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs. CONCLUSIONS: We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.


Assuntos
Evolução Molecular , Variação Genética , Filogenia , Receptores Depuradores Classe A/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sequência Conservada/genética , Bases de Dados Genéticas , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Gambás , Receptores Depuradores Classe A/classificação , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA