Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421948

RESUMO

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , Fenótipo
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
3.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
4.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604360

RESUMO

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Assuntos
Epilepsia , Deficiência Intelectual , Semaforinas , Animais , Orientação de Axônios , Embrião de Galinha , Espinhas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Semaforinas/genética
5.
BMC Med ; 22(1): 151, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589864

RESUMO

BACKGROUND: Clinical complexity, as the interaction between ageing, frailty, multimorbidity and polypharmacy, is an increasing concern in patients with AF. There remains uncertainty regarding how combinations of comorbidities influence management and prognosis of patients with atrial fibrillation (AF). We aimed to identify phenotypes of AF patients according to comorbidities and to assess associations between comorbidity patterns, drug use and risk of major outcomes. METHODS: From the prospective GLORIA-AF Registry, we performed a latent class analysis based on 18 diseases, encompassing cardiovascular, metabolic, respiratory and other conditions; we then analysed the association between phenotypes of patients and (i) treatments received and (ii) the risk of major outcomes. Primary outcome was the composite of all-cause death and major adverse cardiovascular events (MACE). Secondary exploratory outcomes were also analysed. RESULTS: 32,560 AF patients (mean age 70.0 ± 10.5 years, 45.4% females) were included. We identified 6 phenotypes: (i) low complexity (39.2% of patients); (ii) cardiovascular (CV) risk factors (28.2%); (iii) atherosclerotic (10.2%); (iv) thromboembolic (8.1%); (v) cardiometabolic (7.6%) and (vi) high complexity (6.6%). Higher use of oral anticoagulants was found in more complex groups, with highest magnitude observed for the cardiometabolic and high complexity phenotypes (odds ratio and 95% confidence interval CI): 1.76 [1.49-2.09] and 1.57 [1.35-1.81], respectively); similar results were observed for beta-blockers and verapamil or diltiazem. We found higher risk of the primary outcome in all phenotypes, except the CV risk factor one, with highest risk observed for the cardiometabolic and high complexity groups (hazard ratio and 95%CI: 1.37 [1.13-1.67] and 1.47 [1.24-1.75], respectively). CONCLUSIONS: Comorbidities influence management and long-term prognosis of patients with AF. Patients with complex phenotypes may require comprehensive and holistic approaches to improve their prognosis.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Estudos Prospectivos , Fatores de Risco , Resultado do Tratamento , Comorbidade , Anticoagulantes , Sistema de Registros , Acidente Vascular Cerebral/epidemiologia
6.
Eur J Clin Invest ; 54(5): e14152, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205865

RESUMO

AIMS: The influence of social determinants of health (SDOH) on the prognosis of Heart Failure and reduced Ejection Fraction (HFrEF) is increasingly reported. We aim to evaluate the contribution of educational status on outcomes in patients with HFrEF. METHODS: We used data from the WARCEF trial, which randomized HFrEF patients with sinus rhythm to receive Warfarin or Aspirin; educational status of patients enrolled was collected at baseline. We defined three levels of education: low, medium and high level, according to the highest qualification achieved or highest school grade attended. We analysed the impact of the educational status on the risk of the primary composite outcome of all-cause death, ischemic stroke (IS) and intracerebral haemorrhage (ICH); components of the primary outcome were also analysed as secondary outcomes. RESULTS: 2295 patients were included in this analysis; of these, 992 (43.2%) had a low educational level, 947 (41.3%) had a medium education level and the remaining 356 (15.5%) showed a high educational level. Compared to patients with high educational level, those with low educational status showed a high risk of the primary composite outcome (adjusted hazard ratio [aHR]: 1.31, 95% confidence intervals [CI] 1.02-1.69); a non-statistically significant association was observed in those with medium educational level (aHR: 1.20, 95%CI: .93-1.55). Similar results were observed for all-cause death, while no statistically significant differences were observed for IS or ICH. CONCLUSION: Compared to patients with high educational levels, those with low educational status had worse prognosis. SDOH should be considered in patients with HFrEF. CLINICAL TRIAL REGISTRATION: NCT00041938.


Assuntos
Insuficiência Cardíaca , AVC Isquêmico , Humanos , Hemorragia Cerebral , Escolaridade , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/complicações , Prognóstico , Volume Sistólico , Varfarina
7.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410936

RESUMO

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Estado Epiléptico , Humanos , Estudos Retrospectivos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsias Mioclônicas/genética , Convulsões Febris/genética , Fenótipo , Estudos de Associação Genética , Mutação/genética
8.
Epilepsia ; 65(5): 1439-1450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491959

RESUMO

OBJECTIVE: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS: The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE: This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.


Assuntos
Epilepsia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Fenótipo
9.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135915

RESUMO

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genética
10.
Cereb Cortex ; 33(16): 9532-9541, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344172

RESUMO

Mutations of the voltage-gated sodium channel SCN1A gene (MIM#182389) are among the most clinically relevant epilepsy-related genetic mutations and present variable phenotypes, from the milder genetic epilepsy with febrile seizures plus to Dravet syndrome, a severe developmental and epileptic encephalopathy. Qualitative neuroimaging studies have identified malformations of cortical development in some patients and mild atrophic changes, partially confirmed by quantitative studies. Precise correlations between MRI findings and clinical variables have not been addressed. We used morphometric methods and network-based models to detect abnormal brain structural patterns in 34 patients with SCN1A-related epilepsy, including 22 with Dravet syndrome. By measuring the morphometric characteristics of the cortical mantle and volume of subcortical structures, we found bilateral atrophic changes in the hippocampus, amygdala, and the temporo-limbic cortex (P-value < 0.05). By correlating atrophic patterns with brain connectivity profiles, we found the region of the hippocampal formation as the epicenter of the structural changes. We also observed that Dravet syndrome was associated with more severe atrophy patterns with respect to the genetic epilepsy with febrile seizures plus phenotype (r = -0.0613, P-value = 0.03), thus suggesting that both the underlying mutation and seizure severity contribute to determine atrophic changes.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões Febris/diagnóstico por imagem , Convulsões Febris/genética , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Epilepsia/genética , Mutação , Fenótipo
11.
Cereb Cortex ; 33(17): 9709-9717, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429835

RESUMO

The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.


Assuntos
Espasmos Infantis , Humanos , Espasmos Infantis/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Convulsões/patologia , Atrofia/patologia , Proteínas Serina-Treonina Quinases/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-37132416

RESUMO

Dynamin 1 is a GTPase protein involved in synaptic vesicle fission, which facilitates the exocytosis of neurotransmitters necessary for normal signaling. Pathogenic variants in the DNM1 gene are associated with intractable epilepsy, often manifested as infantile spasms at onset, developmental delay, and a movement disorder, and are located in the GTPase and middle domains of the protein. We describe a 36-year-old man with autism and moderate intellectual disability who experienced only a few generalized seizures between the age 16 and 30 years. Using a whole sequencing approach, we identified the c.1994T>C p.(Leu665Pro) de novo novel missense pathogenic variant in the GTPase effector domain (GED) of the DNM1 protein. Structural analyses suggest that this substitution impairs both the stalk formation and its interactions, known to be important for the dynamin-1 physiological cellular function. Our data expand the spectrum of phenotypes associated with pathogenic variants in the DNM1 gene, linking a variant in the GED domain with autism and onset in the adolescence of mild epilepsy, a phenotypic presentation remarkably different from the early infantile epileptic encephalopathy associated with pathogenic variants in the GTPase or middle domains.

13.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38266129

RESUMO

AIMS: Chronic obstructive pulmonary disease (COPD) may influence management and prognosis of atrial fibrillation (AF), but this relationship has been scarcely explored in contemporary global cohorts. We aimed to investigate the association between AF and COPD, in relation to treatment patterns and major outcomes. METHODS AND RESULTS: From the prospective, global GLORIA-AF registry, we analysed factors associated with COPD diagnosis, as well as treatment patterns and risk of major outcomes in relation to COPD. The primary outcome was the composite of all-cause death and major adverse cardiovascular events (MACEs). A total of 36 263 patients (mean age 70.1 ± 10.5 years, 45.2% females) were included; 2,261 (6.2%) had COPD. The prevalence of COPD was lower in Asia and higher in North America. Age, female sex, smoking, body mass index, and cardiovascular comorbidities were associated with the presence of COPD. Chronic obstructive pulmonary disease was associated with higher use of oral anticoagulant (OAC) [adjusted odds ratio (aOR) and 95% confidence interval (CI): 1.29 (1.13-1.47)] and higher OAC discontinuation [adjusted hazard ratio (aHR) and 95% CI: 1.12 (1.01-1.25)]. Chronic obstructive pulmonary disease was associated with less use of beta-blocker [aOR (95% CI): 0.79 (0.72-0.87)], amiodarone and propafenone, and higher use of digoxin and verapamil/diltiazem. Patients with COPD had a higher hazard of primary composite outcome [aHR (95% CI): 1.78 (1.58-2.00)]; no interaction was observed regarding beta-blocker use. Chronic obstructive pulmonary disease was also associated with all-cause death [aHR (95% CI): 2.01 (1.77-2.28)], MACEs [aHR (95% CI): 1.41 (1.18-1.68)], and major bleeding [aHR (95% CI): 1.48 (1.16-1.88)]. CONCLUSION: In AF patients, COPD was associated with differences in OAC treatment and use of other drugs; Patients with AF and COPD had worse outcomes, including higher mortality, MACE, and major bleeding.


Assuntos
Fibrilação Atrial , Doença Pulmonar Obstrutiva Crônica , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Estudos Prospectivos , Fatores de Risco , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Hemorragia/induzido quimicamente , Anticoagulantes , Sistema de Registros , Acidente Vascular Cerebral/epidemiologia
14.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675510

RESUMO

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Espasmos Infantis , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Atrofia , Criança , Homeostase , Humanos , Lactente , Lisossomos , Fenótipo
15.
Am J Med Genet A ; 188(2): 522-533, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713950

RESUMO

CHD2 encodes the chromodomain helicase DNA-binding protein 2, an ATP-dependent enzyme that acts as a chromatin remodeler. CHD2 pathogenic variants have been associated with various early onset phenotypes including developmental and epileptic encephalopathy, self-limiting or pharmacoresponsive epilepsies and neurodevelopmental disorders without epilepsy. We reviewed 84 previously reported patients carrying 76 different CHD2 pathogenic or likely pathogenic variants and describe 18 unreported patients carrying 12 novel pathogenic or likely pathogenic variants, two recurrent likely pathogenic variants (in two patients each), three previously reported pathogenic variants, one gross deletion. We also describe a novel phenotype of adult-onset pharmacoresistant epilepsy, associated with a novel CHD2 missense likely pathogenic variant, located in an interdomain region. A combined review of previously published and our own observations indicates that although most patients (72.5%) carry truncating CHD2 pathogenic variants, CHD2-related phenotypes encompass a wide spectrum of conditions with developmental delay/intellectual disability (ID), including prominent language impairment, attention deficit hyperactivity disorder and autistic spectrum disorder. Epilepsy is present in 92% of patients with a median age at seizure onset of 2 years and 6 months. Generalized epilepsy types are prevalent and account for 75.5% of all epilepsies, with photosensitivity being a common feature and adult-onset nonsyndromic epilepsy a rare presentation. No clear genotype-phenotype correlation has emerged.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a DNA/genética , Eletroencefalografia , Epilepsia/genética , Humanos , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo
16.
Epilepsia ; 63(1): e7-e14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778950

RESUMO

A wide phenotypic spectrum of neurological diseases is associated with KCNA1 (Kv1.1) variants. To investigate the molecular basis of such a heterogeneous clinical presentation and identify the possible correlation with in vitro phenotypes, we compared the functional consequences of three heterozygous de novo variants (p.P403S, p.P405L, and p.P405S) in Kv1.1 pore region found in four patients with severe developmental and epileptic encephalopathy (DEE), with those of a de novo variant in the voltage sensor (p.A261T) identified in two patients with mild, carbamazepine-responsive, focal epilepsy. Patch-clamp electrophysiology was used to investigate the functional properties of mutant Kv1.1 subunits, both expressed as homomers and heteromers with wild-type Kv1.1 subunits. KCNA1 pore mutations markedly decreased (p. P405S) or fully suppressed (p. P403S, p. P405L) Kv1.1-mediated currents, exerting loss-of-function (LoF) effects. By contrast, channels carrying the p.A261T variant exhibited a hyperpolarizing shift of the activation process, consistent with a gain-of-function (GoF) effect. The present results unveil a novel correlation between in vitro phenotype (GoF vs LoF) and clinical course (mild vs severe) in KCNA1-related phenotypes. The excellent clinical response to carbamazepine observed in the patients carrying the A261T variant suggests an exquisite sensitivity of KCNA1 GoF to sodium channel inhibition that should be further explored.


Assuntos
Epilepsia , Carbamazepina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Canal de Potássio Kv1.1/genética , Mutação/genética , Fenótipo
17.
Brain ; 144(5): 1435-1450, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33880529

RESUMO

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Polimicrogiria/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
18.
Neuropediatrics ; 53(1): 46-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34872132

RESUMO

We report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Epilepsia , Sistemas de Transporte de Aminoácidos Básicos/genética , Criança , Epilepsia/genética , Testes Genéticos , Humanos , Masculino , Análise em Microsséries , Convulsões/genética , Sequenciamento do Exoma
19.
Hum Mol Genet ; 28(22): 3755-3765, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31411685

RESUMO

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.


Assuntos
Hemimegalencefalia/genética , Proteína S6 Ribossômica/genética , Serina-Treonina Quinases TOR/genética , Animais , Encéfalo/metabolismo , Criança , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/genética , Feminino , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/genética , Camundongos , Mosaicismo , Mutação , Neurônios/metabolismo , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Mol Genet Metab ; 132(3): 180-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33558080

RESUMO

Morquio B disease is an attenuated phenotype within the spectrum of beta galactosidase (GLB1) deficiencies. It is characterised by dysostosis multiplex, ligament laxity, mildly coarse facies and heart valve defects due to keratan sulphate accumulation, predominantly in the cartilage. Morquio B patients have normal neurological development, setting them apart from those with the more severe GM1 gangliosidosis. Morquio B disease, with an incidence of 1:250.000 to 1:1.000.000 live births, is very rare. Here we report the clinical-biochemical data of nine patients. High amounts of keratan sulfate were detected using LC-MS/MS in the patients' urinary samples, while electrophoresis, the standard procedure of qualitative glycosaminoglycans analysis, failed to identify this metabolite in any of the patients' samples. We performed molecular analyses at gene, gene expression and protein expression levels, for both isoforms of the GLB1 gene, lysosomal GLB1, and the cell-surface expressed Elastin Binding Protein. We characterised three novel GLB1 mutations [c.75 + 2 T > G, c.575A > G (p.Tyr192Cys) and c.2030 T > G (p.Val677Gly)] identified in three heterozygous patients. We also set up a copy number variation assay by quantitative PCR to evaluate the presence of deletions/ insertions in the GLB1 gene. We propose a diagnostic plan, setting out the specific clinical- biochemical and molecular features of Morquio B, in order to avoid misdiagnoses and improve patients' management.


Assuntos
Gangliosidose GM1/diagnóstico , Glicosaminoglicanos/genética , Mucopolissacaridose IV/diagnóstico , beta-Galactosidase/genética , Criança , Pré-Escolar , Feminino , Gangliosidose GM1/genética , Gangliosidose GM1/fisiopatologia , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lisossomos/genética , Masculino , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/fisiopatologia , Mutação de Sentido Incorreto/genética , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA