Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Hepatol ; 16(5): 688-702, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818294

RESUMO

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders of varying severity, ultimately leading to fibrosis. This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis. The pathogenesis of NAFLD is closely associated with disturbances in the gut microbiota and impairment of the intestinal barrier. Non-gut commensal flora, particularly bacteria, play a pivotal role in the progression of NAFLD. Notably, Porphyromonas gingivalis, a principal bacterium involved in periodontitis, is known to facilitate lipid accumulation, augment immune responses, and induce insulin resistance, thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD. The influence of oral microbiota on NAFLD via the "oral-gut-liver" axis is gaining recognition, offering a novel perspective for NAFLD management through microbial imbalance correction. This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms, emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.

2.
Bioact Mater ; 21: 313-323, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36157248

RESUMO

Hydrogels are emerging as the most promising dressings due to their excellent biocompatibility, extracellular matrix mimicking structure, and drug loading ability. However, existing hydrogel dressings exhibit limited breathability, poor environmental adaptability, potential drug resistance, and limited drug options, which extremely restrict their therapeutic effect and working scenarios. Here, the current research introduces the first paradigm of hydrogel textile dressings based on novel gelatin glycerin hydrogel (glyhydrogel) fibers fabricated by the Hofmeister effect based wet spinning. Benefiting from the unique knitted structure, the textile dressing features excellent breathability (1800 times that of the commercially available 3 M dressing) and stretchability (535.51 ± 38.66%). Furthermore, the glyhydrogel textile dressing can also withstand the extreme temperature of -80 °C, showing the potential for application in subzero environments. Moreover, the introduction of glycerin endows the textile dressing with remarkable antibacterial property and expands the selection of loaded drugs (e.g., clindamycin). The prepared glyhydrogel textile dressing shows an excellent infected wound healing effect with a complete rat skin closure within 14 days. All these functions have not been achievable by traditional hydrogel dressings and provide a new approach for the development of hydrogel dressings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA