Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 63(3): 543-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22202887

RESUMO

Vibrio species are ubiquitously distributed in marine waters all over the world. High genome plasticity due to frequent mutation, recombination, and lateral gene transfer enables Vibrio to adapt rapidly to environmental changes. The genus Vibrio comprises several human pathogens, which commonly cause outbreaks of severe diarrhea in tropical regions. In recent years, pathogenic Vibrio emerged also in coastal European waters. Little is known about factors driving the proliferation of Vibrio spp. in temperate waters such as the North Sea. In this study a quantification of Vibrio in the North Sea and their response to biotic and abiotic parameters were assessed. Between January and December 2009, Vibrio at Helgoland Roads (North Sea, Germany) were quantified using fluorescence in situ hybridization. Vibrio numbers up to 3.4 × 10(4) cells × mL(-1) (2.2% of total microbial counts) were determined in summer, but their abundance was significantly lower in winter (5 × 10(2) cells × mL(-1)). Correlations between Vibrio and nutrients (SiO(2), PO(4) (3-), DIN), Secchi depth, temperature, salinity, and chlorophyll a were calculated using Spearman rank analysis. Multiple stepwise regression analysis was carried out to analyze the additive influence of multiple factors on Vibrio. Based on these calculations, we found that high water temperature and low salinity best explained the increase of Vibrio cell numbers. Other environmental parameters, especially nutrients and chlorophyll a, also had an influence. All variables were shown to be subject to the overall seasonal dynamics at Helgoland Roads. Multiple regression models could represent an efficient and reliable tool to predict Vibrio abundances in response to the climate change in European waters.


Assuntos
Água do Mar/microbiologia , Vibrio/isolamento & purificação , Modelos Biológicos , Mar do Norte , Estações do Ano , Água do Mar/química , Vibrio/classificação , Vibrio/genética
2.
ISME Commun ; 1(1): 29, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36739458

RESUMO

Coastal sands are biocatalytic filters for dissolved and particulate organic matter of marine and terrestrial origin, thus, acting as centers of organic matter transformation. At high temporal resolution, we accessed the variability of benthic bacterial communities over two annual cycles at Helgoland (North Sea), and compared it with seasonality of communities in Isfjorden (Svalbard, 78°N) sediments, where primary production does not occur during winter. Benthic community structure remained stable in both, temperate and polar sediments on the level of cell counts and 16S rRNA-based taxonomy. Actinobacteriota of uncultured Actinomarinales and Microtrichales were a major group, with 8 ± 1% of total reads (Helgoland) and 31 ± 6% (Svalbard). Their high activity (frequency of dividing cells 28%) and in situ cell numbers of >10% of total microbes in Svalbard sediments, suggest Actinomarinales and Microtrichales as key heterotrophs for carbon mineralization. Even though Helgoland and Svalbard sampling sites showed no phytodetritus-driven changes of the benthic bacterial community structure, they harbored significantly different communities (p < 0.0001, r = 0.963). The temporal stability of benthic bacterial communities is in stark contrast to the dynamic succession typical of coastal waters, suggesting that pelagic and benthic bacterial communities respond to phytoplankton productivity very differently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA