Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31932330

RESUMO

The development of vaccines for prevention of diseases caused by pathogenic species can encounter major obstacles if high sequence diversity is observed between individual strains. Therefore, development might be restricted either to conserved antigens, which are often rare, or to multivalent vaccines, which renders the production more costly and cumbersome. In light of this complexity, we applied a structure-based surface shaping approach for the development of a Lyme borreliosis (LB) vaccine suitable for the United States and Europe. The surface of the C-terminal fragment of outer surface protein A (OspA) was divided into distinct regions, based primarily on binding sites of monoclonal antibodies (MAbs). In order to target the six clinically most relevant OspA serotypes (ST) in a single protein, exposed amino acids of the individual regions were exchanged to corresponding amino acids of a chosen OspA serotype. Six chimeric proteins were constructed, and, based on their immunogenicity, four of these chimeras were tested in mouse challenge models. Significant protection could be demonstrated for all four proteins following challenge with infected ticks (OspA ST1, OspA ST2, and OspA ST4) or with in vitro-grown spirochetes (OspA ST1 and OspA ST5). Two of the chimeric proteins were linked to form a fusion protein, which provided significant protection against in vitro-grown spirochetes (OspA ST1) and infected ticks (OspA ST2). This article presents the proof-of-concept study for a multivalent OspA vaccine targeting a wide range of pathogenic LB Borrelia species with a single recombinant antigen for prevention of Lyme borreliosis.


Assuntos
Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Borrelia/imunologia , Lipoproteínas/imunologia , Doença de Lyme/prevenção & controle , Proteínas Recombinantes/imunologia , Animais , Antígenos de Superfície/administração & dosagem , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Borrelia/genética , Modelos Animais de Doenças , Lipoproteínas/administração & dosagem , Lipoproteínas/genética , Camundongos , Engenharia de Proteínas , Proteínas Recombinantes/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
J Proteome Res ; 15(9): 3055-97, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27403532

RESUMO

Moraxella catarrhalis, a Gram-negative bacterium, is an important respiratory pathogen causing acute otitis media and exacerbations of chronic obstructive pulmonary disease. Adhesion of the pathogen to human epithelial cells is mediated via bacterial membrane adhesin proteins. To identify the surface proteome of Moraxella catarrhalis, we applied different membrane protein extraction methods in combination with different proteomic technologies. Proteins from preparations of outer membrane vesicles and from carbonate extractions were analyzed using either a gel-based nano-HPLC-MS/MS technique or 2D-LC-MS/MS. Furthermore, because glycosaminoglycans (GAGs) play an important role for microbial entry into human cells, the GAG-binding membranome of Moraxella catarrhalis was investigated using a glycan-based pull-down approach. By these means, potential vaccine protein candidates that were previously selected by the ANTIGENome technology were confirmed, but importantly also novel proteins were identified as candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Moraxella catarrhalis/química , Proteoma/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Infecções por Moraxellaceae/prevenção & controle , Infecções por Moraxellaceae/terapia , Ligação Proteica , Proteômica/métodos
3.
Open Forum Infect Dis ; 11(9): ofae467, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233712

RESUMO

Background: Vaccine candidate VLA15 is designed to protect against the dominant Borrelia genospecies-causing Lyme disease in North America and Europe. Active immunization with VLA15 has protected in the mouse model of tick challenge. VLA15 is currently under evaluation in clinical studies for the prevention of Lyme borreliosis. Methods: Mice were passively administered sera from clinical trial participants vaccinated with VLA15, or normal human serum from unvaccinated individuals as control. Posttransfer serum anti-outer surface protein A (OspA) immunoglobulin G titers were assessed by enzyme-linked immunosorbent assay. Following passive transfer, mice were challenged with Ixodes ticks colonized with Borrelia burgdorferi (OspA serotype 1) or Borrelia afzelii (OspA serotype 2) and infection was determined by serology for VlsE C6 or by polymerase chain reaction and culture to assess the presence of Borrelia bacteria. Results: Passive transfer of immune sera prevented transmission of Borrelia from the tick vector and protected mice against challenge. Posttransfer protective threshold immunoglobulin G antibody titers were observed in this animal model of 131 U/mL for B burgdorferi (OspA serotype 1) and 352 U/mL for B afzelii (serotype 2). Conclusions: Passive transfer of sera from trial participants immunized with VLA15 protected mice from borreliosis in a tick challenge model. This indicates that VLA15 induces functional immune responses in people that can be linked to efficacy in a stringent preclinical model.

4.
Commun Med (Lond) ; 4(1): 62, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570605

RESUMO

BACKGROUND: The fight against COVID-19 requires mass vaccination strategies, and vaccines inducing durable cross-protective responses are still needed. Inactivated vaccines have proven lasting efficacy against many pathogens and good safety records. They contain multiple protein antigens that may improve response breadth and can be easily adapted every year to maintain preparedness for future seasonally emerging variants. METHODS: The vaccine dose was determined using ELISA and pseudoviral particle-based neutralization assay in the mice. The immunogenicity was assessed in the non-human primates with multiplex ELISA, neutralization assays, ELISpot and intracellular staining. The efficacy was demonstrated by viral quantification in fluids using RT-qPCR and respiratory tissue lesions evaluation. RESULTS: Here we report the immunogenicity and efficacy of VLA2001 in animal models. VLA2001 formulated with alum and the TLR9 agonist CpG 1018™ adjuvant generate a Th1-biased immune response and serum neutralizing antibodies in female BALB/c mice. In male cynomolgus macaques, two injections of VLA2001 are sufficient to induce specific and polyfunctional CD4+ T cell responses, predominantly Th1-biased, and high levels of antibodies neutralizing SARS-CoV-2 infection in cell culture. These antibodies also inhibit the binding of the Spike protein to human ACE2 receptor of several variants of concern most resistant to neutralization. After exposure to a high dose of homologous SARS-CoV-2, vaccinated groups exhibit significant levels of protection from viral replication in the upper and lower respiratory tracts and from lung tissue inflammation. CONCLUSIONS: We demonstrate that the VLA2001 adjuvanted vaccine is immunogenic both in mouse and NHP models and prevent cynomolgus macaques from the viruses responsible of COVID-19.


Mass vaccination in response to the COVID-19 pandemic has substantially reduced the number of severe cases and hospitalizations. As the virus continues to evolve and give rise to new variants that cause local outbreaks, there is a need to develop new vaccine candidates capable of stopping the viral transmission. In this study, we explore the immune responses induced by the vaccine candidate VLA2001 in animal models. We highlight the vaccine's ability to induce an immune response capable of blocking the virus and eliminating infected cells. We show that it can protect the host from developing severe disease.

5.
J Bacteriol ; 194(24): 6969, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209224

RESUMO

Here we report the annotated genome sequence of Moraxella catarrhalis strain RH4, a seroresistant-lineage strain isolated from the blood of an infected patient. This genome sequence will allow us to gain further insight into the genetic diversity of clinical M. catarrhalis isolates and will facilitate study of M. catarrhalis pathogenesis.


Assuntos
Genoma Bacteriano , Moraxella catarrhalis/genética , Composição de Bases/genética , Sequência de Bases , Sangue/microbiologia , DNA Bacteriano/genética , Variação Genética , Humanos , Dados de Sequência Molecular , Moraxella catarrhalis/isolamento & purificação , Infecções por Moraxellaceae/microbiologia , Análise de Sequência de DNA , Escarro/microbiologia , beta-Lactamases/genética
6.
Proteomics ; 12(6): 845-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22539435

RESUMO

The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host-pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent-based fractionation of outer membrane proteins; (ii) a trypsin-based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin-labelled fraction using streptavidin. Proteins derived from the detergent-based fractionation were further sub-fractionated by heparin affinity chromatography since heparin-like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel-based liquid chromatography (LC)-MS/MS technique or by two-dimensional (2D)-LC-MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Borrelia/química , Doença de Lyme/microbiologia , Proteômica , Cromatografia de Afinidade , Proteoma/análise , Espectrometria de Massas em Tandem
7.
Front Immunol ; 13: 904415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990686

RESUMO

The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Medula Óssea , Sobrevivência Celular , Imunidade Humoral , Interleucina-6/metabolismo , Camundongos , Oligodesoxirribonucleotídeos/metabolismo , Plasmócitos , Toxoide Tetânico , Tuberculose/metabolismo
8.
JCI Insight ; 7(14)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35700051

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro-plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Anticorpos Antivirais , Febre de Chikungunya/prevenção & controle , Humanos , Estudos Soroepidemiológicos , Vacinas Atenuadas
9.
Hum Vaccin ; 7(6): 630-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21508677

RESUMO

Indwelling central venous catheters are a common and important source of nosocomial Staphylococcus epidermidis and S. aureus infections, causing increased morbidity and mortality during hospitalization. A model was developed to reflect the clinical situation of catheter colonization by transient hematogeneously spread staphylococci, in order to investigate potential vaccine candidates. Rats were cannulated in the right jugular vein, followed by challenge through the tail vein with either S. epidermidis RP62a, or S. aureus Becker. At 24 hr post challenge, colonizing bacteria were found to be present on the catheter in an early biofilm, as evidenced by the presence of polysaccharide intercellular adhesin (PIA). For vaccination studies, rats were first immunized, surgically cannulated, and then challenged via the tail vein. At 24 hr post challenge, the catheters were harvested and cultured on mannitol salt agar plates. The catheters were scored as positive if there was outgrowth of bacterial colonies, and negative if no colonies were observed. A S. epidermidis antigen (SERP0630, MenD), and a S. aureus antigen (SACOL1138, iron regulated surface determinant B, IsdB) were found to have significant protective activity in this model, compared to mock immunized controls. Using SERP0630 as the test immunogen, it was also determined that a single vaccination of rats after cannulation was sufficient for significant catheter protection. This model may be used to evaluate antigens for protective activity against transient hematogenous spread of staphylococci resulting in catheter colonization and early biofilm formation.


Assuntos
Biofilmes , Infecções Relacionadas a Cateter/prevenção & controle , Cateterismo Venoso Central/efeitos adversos , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus epidermidis/imunologia , Animais , Feminino , Modelos Animais , Ratos , Ratos Sprague-Dawley
10.
Infect Immun ; 78(9): 4051-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20624906

RESUMO

Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Antígenos de Bactérias/análise , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Transporte/análise , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Feminino , Genoma Bacteriano , Humanos , Camundongos , Camundongos Endogâmicos BALB C
11.
J Virol ; 83(11): 5581-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297470

RESUMO

The internal hydrophobic sequence within the flaviviral capsid protein (protein C) plays an important role in the assembly of infectious virions. Here, this sequence was analyzed in a West Nile virus lineage I isolate (crow V76/1). An infectious cDNA clone was constructed and used to introduce deletions into the internal hydrophobic domain which comprises helix alpha2 and part of the loop intervening helices alpha2 and alpha3. In total, nine capsid deletion mutants (4 to 14 amino acids long) were constructed and tested for virus viability. Some of the short deletions did not significantly affect growth in cell culture, whereas larger deletions removing almost the entire hydrophobic region significantly impaired viral growth. Efficient growth of the majority of mutants could, however, be restored by the acquisition of second-site mutations. In most cases, these resuscitating mutations were point mutations within protein C changing individual amino acids into more hydrophobic residues, reminiscent of what had been observed previously for another flavivirus, tick-borne encephalitis virus. However, we also identified viable spontaneous pseudorevertants with more than one-third of the capsid protein removed, i.e., 36 or 37 of a total of 105 residues, including all of helix alpha3 and a hydrophilic segment connecting alpha3 and alpha4. These large deletions are predicted to induce formation of large, predominantly hydrophobic fusion helices which may substitute for the loss of the internal hydrophobic domain, underlining the unrivaled structural and functional flexibility of protein C.


Assuntos
Proteínas do Capsídeo/química , Vírion/química , Montagem de Vírus , Vírus do Nilo Ocidental/química , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Cricetinae , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Deleção de Genes , Genoma Viral/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Proteína C/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação , Vírus do Nilo Ocidental/metabolismo
12.
Biochem J ; 422(3): 533-42, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19552626

RESUMO

Streptococcus pyogenes is one of the most common human pathogens and possesses diverse mechanisms to evade the human immune defence. One example of its immune evasion is the degradation of the chemokine IL (interleukin)-8 by ScpC, a serine proteinase that prevents the recruitment of neutrophils to an infection site. By applying the ANTIGENome technology and using human serum antibodies, we identified Spy0416, annotated as ScpC, as a prominent antigen that induces protective immune responses in animals. We demonstrate here for the first time that the recombinant form of Spy0416 is capable of IL-8 degradation in vitro in a concentration- and time-dependent manner. Mutations in the conserved amino acid residues of the catalytic triad of Spy0416 completely abolished in vitro activity. However, the isolated predicted proteinase domain does not exhibit IL-8-degrading activity, but is dependent on the presence of the C-terminal region of Spy0416. Binding to IL-8 is mainly mediated by the catalytic domain. However, the C-terminal region modulates substrate binding, indicating that the proteolytic activity is amenable to regulation via the non-catalytic regions. The specificity for human substrates is not restricted to IL-8, since we also detected in vitro protease activity for another CXC chemokine GRO-alpha (growth-related oncogene alpha), but not for NAP-2 (neutrophil-activating protein 2), SDF (stromal-cell-derived factor)-1alpha, PF-4 (platelet factor 4), I-TAC (interferon-gamma-inducible T-cell alpha-chemoattractant), IP-10 (interferon-gamma-inducible protein 10) and MCP-1 (monocyte chemoattractant protein 1). The degradation of two human CXC chemokines in vitro, the high sequence conservation, the immunogenicity of the protein in humans and the shown protection in animal studies suggest that Spy0416 is a promising vaccine candidate for the prevention of infections by S. pyogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiocinas/metabolismo , Serina Endopeptidases/metabolismo , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/genética , Quimiocinas CXC/metabolismo , Immunoblotting , Interleucina-8/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Streptococcus pyogenes/genética , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
13.
Lancet Infect Dis ; 20(10): 1193-1203, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32497524

RESUMO

BACKGROUND: Chikungunya disease, which results in incapacitating arthralgia, has been reported worldwide. We developed a live-attenuated chikungunya virus (CHIKV) vaccine candidate designed for active immunisation of the general population living in endemic regions, as well as serving as a prophylactic measure for travellers to endemic areas. METHODS: This single-blind, randomised, dose-escalation, phase 1 study investigated as primary outcome safety of a live-attenuated CHIKV vaccine candidate. At two professional clinical trial centres in Illinois and Alabama, USA, healthy volunteers aged 18-45 years were randomly assigned (1:1:2) to one of three escalating dose groups (low dose 3·2 × 103 per 0·1 mL; medium dose 3·2 × 104 per 1 mL; or high dose 3·2 × 105 50% tissue culture infection dose per 1 mL) and received a single-shot immunisation on day 0. Individuals in all groups were revaccinated with the highest dose on either month 6 or 12, and followed up for 28 days after revaccination. The safety analysis included all individuals who received the single vaccination; the immunogenicity analysis, which was a secondary outcome, included all individuals who completed the study without major protocol deviations (per-protocol population). The study is registered with ClinicalTrials.gov, NCT03382964, and is complete. FINDINGS: The study was done between March 5, 2018, and Jul 23, 2019, with 120 adults recruited and enrolled between March 5 and June 21, 2018, and assigned to receive a low (n=31), medium (n=30), or high (n=59) dose of the vaccine. The vaccine was safe in the high-dose group and well tolerated in the low-dose and medium-dose groups. Four (7%) of 59 vaccinees in the high-dose group reported any local reaction, and 11 (36%), 12 (40%), and 40 (68%) volunteers in the low-dose, medium-dose, and high-dose groups, respectively, reported any solicited systemic reaction. No vaccine-related serious adverse events were reported. Data up to month 12 after a single immunisation of the 120 healthy volunteers showed a good immunogenicity profile with 100% seroconversion rates achieved at day 14 (103 [100%] of 103) and sustained for 1 year across all dose groups. Mean peak antibody titres at day 28 ranged from 592·6 to 686·9 geometric mean titres from the low-dose to high-dose groups, respectively. A single vaccination was sufficient to induce sustaining high-titre neutralising antibodies, as shown by the absence of an anamnestic response after any revaccination ranging from 94% to 100% of participants. Following revaccination, vaccinees were protected from vaccine-induced viraemia. INTERPRETATION: A novel live-attenuated CHIKV vaccine was well tolerated and highly immunogenic in an adult population and could be an effective intervention for prophylaxis of chikungunya disease worldwide. FUNDING: Valneva, Vienna, Austria; Coalition for Epidemic Preparedness Innovation and EU Horizon 2020.


Assuntos
Febre de Chikungunya/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Humanos , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Vacinas Atenuadas/imunologia , Vacinas Virais/efeitos adversos , Adulto Jovem
14.
Front Immunol ; 10: 2214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616417

RESUMO

Immaturity of the immune system contributes to poor vaccine responses in early life. Germinal center (GC) activation is limited due to poorly developed follicular dendritic cells (FDC), causing generation of few antibody-secreting cells (ASCs) with limited survival and transient antibody responses. Herein, we compared the potential of five adjuvants, namely LT-K63, mmCT, MF59, IC31, and alum to overcome limitations of the neonatal immune system and to enhance and prolong responses of neonatal mice to a pneumococcal conjugate vaccine Pnc1-TT. The adjuvants LT-K63, mmCT, MF59, and IC31 significantly enhanced GC formation and FDC maturation in neonatal mice when co-administered with Pnc1-TT. This enhanced GC induction correlated with significantly enhanced vaccine-specific ASCs by LT-K63, mmCT, and MF59 in spleen 14 days after immunization. Furthermore, mmCT, MF59, and IC31 prolonged the induction of vaccine-specific ASCs in spleen and increased their persistence in bone marrow up to 9 weeks after immunization, as previously shown for LT-K63. Accordingly, serum Abs persisted above protective levels against pneumococcal bacteremia and pneumonia. In contrast, alum only enhanced the primary induction of vaccine-specific IgG Abs, which was transient. Our comparative study demonstrated that, in contrast to alum, LT-K63, mmCT, MF59, and IC31 can overcome limitations of the neonatal immune system and enhance both induction and persistence of protective immune response when administered with Pnc1-TT. These adjuvants are promising candidates for early life vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Produtoras de Anticorpos/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Centro Germinativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Compostos de Alúmen/farmacologia , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/farmacologia , Medula Óssea/imunologia , Toxina da Cólera/farmacologia , Combinação de Medicamentos , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Imunoglobulina G/sangue , Camundongos , Oligodesoxirribonucleotídeos/farmacologia , Oligopeptídeos/farmacologia , Vacinas Pneumocócicas/administração & dosagem , Polissorbatos/farmacologia , Baço/imunologia , Esqualeno/farmacologia
15.
Front Immunol ; 9: 381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541075

RESUMO

Neonates and infants are more vulnerable to infections and show reduced responses to vaccination. Consequently, repeated immunizations are required to induce protection and early life vaccines against major pathogens such as influenza are yet unavailable. Formulating antigens with potent adjuvants, including immunostimulators and delivery systems, is a demonstrated approach to enhance vaccine efficacy. Yet, adjuvants effective in adults may not meet the specific requirements for activating the early life immune system. Here, we assessed the neonatal adjuvanticity of three novel adjuvants including TLR4 (glucopyranosyl lipid adjuvant-squalene emulsion), TLR9 (IC31®), and Mincle (CAF01) agonists, which all induce germinal centers (GCs) and potent antibody responses to influenza hemagglutinin (HA) in adult mice. In neonates, a single dose of HA formulated into each adjuvant induced T follicular helper (TFH) cells. However, only HA/CAF01 elicited significantly higher and sustained antibody responses, engaging neonatal B cells to differentiate into GCs already after a single dose. Although antibody titers remained lower than in adults, HA-specific responses induced by a single neonatal dose of HA/CAF01 were sufficient to confer protection against influenza viral challenge. Postulating that the neonatal adjuvanticity of CAF01 may result from the functionality of the C-type lectin receptor (CLR) Mincle in early life we asked whether other C-type lectin agonists would show a similar neonatal adjuvanticity. Replacing the Mincle agonist trehalose 6,6'-dibehenate by Curdlan, which binds to Dectin-1, enhanced antibody responses through the induction of similar levels of TFH, GCs and bone marrow high-affinity plasma cells. Thus, specific requirements of early life B cells may already be met after a single vaccine dose using CLR-activating agonists, identified here as promising B cell immunostimulators for early life vaccines when included into cationic liposomes.


Assuntos
Adjuvantes Imunológicos , Linfócitos B/imunologia , Centro Germinativo/imunologia , Glicolipídeos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , beta-Glucanas/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Feminino , Glicolipídeos/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Lectinas Tipo C/agonistas , Lectinas Tipo C/metabolismo , Lipossomos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/agonistas , Receptor Toll-Like 9/metabolismo , beta-Glucanas/farmacologia
16.
J Pediatr (Rio J) ; 94(1): 23-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28668258

RESUMO

OBJECTIVE: Community-acquired pneumonia is an important cause of morbidity in childhood, but the detection of its causative agent remains a diagnostic challenge. The authors aimed to evaluate the role of the chest radiograph to identify cases of community-aquired pneumonia caused by typical bacteria. METHODS: The frequency of infection by Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis was compared in non-hospitalized children with clinical diagnosis of community acquired pneumonia aged 2-59 months with or without radiological confirmation (n=249 and 366, respectively). Infection by S. pneumoniae was diagnosed by the detection of a serological response against at least one of eight pneumococcal proteins (defined as an increase ≥2-fold in the IgG levels against Ply, CbpA, PspA1 and PspA2, PhtD, StkP-C, and PcsB-N, or an increase ≥1.5-fold against PcpA). Infection by H. influenzae and M. catarrhalis was defined as an increase ≥2-fold on the levels of microbe-specific IgG. RESULTS: Children with radiologically confirmed pneumonia had higher rates of infection by S. pneumoniae. The presence of pneumococcal infection increased the odds of having radiologically confirmed pneumonia by 2.8 times (95% CI: 1.8-4.3). The negative predictive value of the normal chest radiograph for infection by S. pneumoniae was 86.3% (95% CI: 82.4-89.7%). There was no difference on the rates of infection by H. influenzae and M. catarrhalis between children with community-acquired pneumonia with and without radiological confirmation. CONCLUSIONS: Among children with clinical diagnosis of community-acquired pneumonia submitted to chest radiograph, those with radiologically confirmed pneumonia present a higher rate of infection by S. pneumoniae when compared with those with a normal chest radiograph.


Assuntos
Infecções por Haemophilus/diagnóstico por imagem , Infecções por Moraxellaceae/diagnóstico por imagem , Pneumonia Bacteriana/diagnóstico por imagem , Pneumonia Bacteriana/microbiologia , Radiografia Torácica , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/sangue , Pré-Escolar , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Infecções Comunitárias Adquiridas/microbiologia , Feminino , Haemophilus influenzae/imunologia , Haemophilus influenzae/isolamento & purificação , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Masculino , Moraxella catarrhalis/imunologia , Moraxella catarrhalis/isolamento & purificação , Pneumonia Pneumocócica/diagnóstico por imagem , Estudos Prospectivos , Sensibilidade e Especificidade , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação
17.
PLoS One ; 12(9): e0184357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863166

RESUMO

We have previously shown that the Outer surface protein A (OspA) based Lyme borreliosis vaccine VLA15 induces protective immunity in mice. Herein, we report the induction of protective immunity by VLA15 with mouse models using ticks infected with B. burgdorferi (OspA serotype 1), B. afzelii (OspA serotype 2) and B. bavariensis (OspA serotype 4) or with in vitro grown B. garinii (OspA serotype 5 and 6) for challenge. For B. garinii (OspA serotype 3), we have developed a growth inhibition assay using chicken complement and functional antibodies targeting B. garinii (OspA serotype 3) could be demonstrated after immunization with VLA15. Furthermore, following three priming immunizations, a booster dose was administered five months later and the induction of immunological memory could be confirmed. Thus, the antibody titers after the booster dose were increased considerably compared to those after primary immunization. In addition, the half-lives of anti-OspA serotype specific antibodies after administration of the booster immunization were longer than after primary immunization. Taken together, we could show that VLA15 induced protection in mice against challenge with four different clinically relevant Borrelia species (B. burgdorferi, B. afzelii, B. garinii and B. bavariensis) expressing five of the six OspA serotypes included in the vaccine. The protection data is supported by functional assays showing efficacy against spirochetes expressing any of the six OspA serotypes (1 to 6). To our knowledge, this is the first time a Lyme borreliosis vaccine has been able to demonstrate such broad protection in preclinical studies. These new data provide further promise for the clinical development of VLA15 and supports our efforts to provide a new Lyme borreliosis vaccine available for global use.


Assuntos
Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Grupo Borrelia Burgdorferi/genética , Lipoproteínas/genética , Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Sorogrupo
18.
JCI Insight ; 2(6): e83527, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28352649

RESUMO

Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory.


Assuntos
Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Macaca fascicularis , Vacinas Atenuadas/efeitos adversos , Vacinas Virais/efeitos adversos
19.
Curr Opin Microbiol ; 7(3): 314-20, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15196501

RESUMO

The availability of complete genome sequences of pathogens has dramatically changed the scope for developing improved and novel vaccines by increasing the speed of target identification. Genomics-based technologies have many advantages, compared to conventional approaches, which are time-consuming and usually identify only abundant antigens that are expressible under in vitro culture conditions. This review focuses on recent reports of genomics-based strategies that can be applied to most pathogens and that exploit genome sequence information in alliance with adjunct technologies, including bioinformatics, expression analyses, random mutagenesis or protein/peptide-based selection methods. Despite the caveats that are associated with the individual approaches, these technologies have already made major contributions to the identification and selection of novel vaccine candidates to combat bacterial infections.


Assuntos
Vacinas Bacterianas , Desenho de Fármacos , Genoma Bacteriano , Genômica , Infecções Bacterianas/prevenção & controle , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Mutagênese , Transcrição Gênica
20.
Pediatr Infect Dis J ; 35(6): 683-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26954601

RESUMO

BACKGROUND: Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are common causative agents of respiratory infections. Pneumococcal conjugate vaccines have been introduced recently, but their effect on the natural immunity against protein antigens from these pathogens has not been elucidated. METHODS: This was an age-matched observational controlled study that evaluated the influence of 10-valent pneumococcal conjugate vaccines on the levels of antibodies and frequencies of antibody responses against proteins from S. pneumoniae, H. influenzae and M. catarrhalis in serum samples of children with community-acquired pneumonia. Eight pneumococcal proteins (pneumolysin, choline-binding protein A, pneumococcal surface protein A families 1 and 2, pneumococcal choline-binding protein A, pneumococcal histidine triad protein D, serine/threonine protein kinase, protein required for cell wall separation of group B streptococcus), 3 proteins from H. influenzae (including protein D) and 5 M. catarrhalis proteins were investigated. RESULTS: The study group comprised 38 vaccinated children and 114 age-matched controls (median age: 14.5 vs. 14.6 months, respectively; P = 0.997), all with community-acquired pneumonia. There was no difference on clinical baseline characteristics between vaccinated and unvaccinated children. Vaccinated children had significantly lower levels of antibodies against 4 of the studied pneumococcal antigens (P = 0.048 for Ply, P = 0.018 for pneumococcal surface protein A, P = 0.001 for StkP and P = 0.028 for PcsB) and higher levels of antibodies against M. catarrhalis (P = 0.015). Nevertheless, the vaccination status did not significantly affect the rates of antibody responses against S. pneumoniae, H. influenzae and M. catarrhalis. CONCLUSIONS: In spite of the differences that have been found on the level of natural antibodies, no effect from pneumococcal vaccination was observed on the rate of immune responses associated with community-acquired pneumonia against protein antigens from S. pneumoniae, H. influenzae and M. catarrhalis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Haemophilus influenzae/imunologia , Moraxella catarrhalis/imunologia , Vacinas Pneumocócicas/imunologia , Pneumonia Bacteriana/microbiologia , Streptococcus pneumoniae/imunologia , Formação de Anticorpos , Proteínas de Bactérias/imunologia , Pré-Escolar , Infecções Comunitárias Adquiridas/microbiologia , Feminino , Haemophilus influenzae/isolamento & purificação , Humanos , Lactente , Masculino , Moraxella catarrhalis/isolamento & purificação , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA