Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2312845121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241432

RESUMO

Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis and find that under some circumstances, this can drive populations toward the boundary state, which can thus represent a long-term evolutionary attractor.


Assuntos
Taxa de Mutação , Seleção Genética , Mutação , Evolução Molecular , Densidade Demográfica , Modelos Genéticos
2.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577473

RESUMO

Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis, and find that under some circumstances this can drive populations towards the boundary state, which can thus represent a long-term evolutionary attractor.

3.
Genetics ; 221(4)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35389471

RESUMO

In rapidly evolving populations, numerous beneficial and deleterious mutations can arise and segregate within a population at the same time. In this regime, evolutionary dynamics cannot be analyzed using traditional population genetic approaches that assume that sites evolve independently. Instead, the dynamics of many loci must be analyzed simultaneously. Recent work has made progress by first analyzing the fitness variation within a population, and then studying how individual lineages interact with this traveling fitness wave. However, these "traveling wave" models have previously been restricted to extreme cases where selection on individual mutations is either much faster or much slower than the typical coalescent timescale Tc. In this work, we show how the traveling wave framework can be extended to intermediate regimes in which the scaled fitness effects of mutations (Tcs) are neither large nor small compared to one. This enables us to describe the dynamics of populations subject to a wide range of fitness effects, and in particular, in cases where it is not immediately clear which mutations are most important in shaping the dynamics and statistics of genetic diversity. We use this approach to derive new expressions for the fixation probabilities and site frequency spectra of mutations as a function of their scaled fitness effects, along with related results for the coalescent timescale Tc and the rate of adaptation or Muller's ratchet. We find that competition between linked mutations can have a dramatic impact on the proportions of neutral and selected polymorphisms, which is not simply summarized by the scaled selection coefficient Tcs. We conclude by discussing the implications of these results for population genetic inferences.


Assuntos
Genética Populacional , Seleção Genética , Adaptação Fisiológica/genética , Evolução Biológica , Modelos Genéticos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA