Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4122-4132, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853970

RESUMO

The aim of this study was to perform a phytoscreening of per- and polyfluoroalkyl substances (PFAS) at a contaminated site in Germany, to investigate the applicability of this technique for PFAS contaminations. Foliage of three species, namely, white willow (Salix alba L.), black poplar (Populus nigra L.), and black alder (Alnus glutinosa L.), were sampled to evaluate seasonal and annual variations in PFAS concentrations. The results of the phytoscreening clearly indicated species and specific differences, with the highest PFAS sum concentrations ∑23 observed in October for white willow (0-1800 µg kg-1), followed by black poplar (6.7-32 µg kg-1) and black alder (0-13 µg kg-1). The bulk substances in leaves were highly mobile short-chain perfluoroalkyl carboxylic acids (PFCAs). In contrast, the PFAS composition in soil was dominated by long-chain PFCAs, perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), as a result of the lower mobility with ∑23PFAS ranging between 0.18 and 26 µg L-1 (eluate) and between 66 and 420 µg kg-1 (solid). However, the PFAS composition in groundwater was comparable to the spectrum observed in leaves. Spatial interpolations of PFAS in groundwater and foliage correspond well and demonstrate the successful application of phytoscreening to detect and delineate the impact of the studied PFAS on groundwater.


Assuntos
Ácidos Alcanossulfônicos , Monitoramento Ambiental , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Ácidos Carboxílicos , Fluorocarbonos/análise , Alemanha , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 47(17): 9747-55, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23895264

RESUMO

Anthropogenic alterations in urban areas influence the thermal environment causing elevated atmospheric and subsurface temperatures. The subsurface urban heat island effect is observed in several cities. Often shallow urban aquifers exist with thermal anomalies that spread laterally and vertically, resulting in the long-term accumulation of heat. In this study, we develop an analytical heat flux model to investigate possible drivers such as increased ground surface temperatures (GSTs) at artificial surfaces and heat losses from basements of buildings, sewage systems, subsurface district heating networks, and reinjection of thermal wastewater. By modeling the anthropogenic heat flux into the subsurface of the city of Karlsruhe, Germany, in 1977 and 2011, we evaluate long-term trends in the heat flux processes. It revealed that elevated GST and heat loss from basements are dominant factors in the heat anomalies. The average total urban heat flux into the shallow aquifer in Karlsruhe was found to be ∼759 ± 89 mW/m(2) in 1977 and 828 ± 143 mW/m(2) in 2011, which represents an annual energy gain of around 1.0 × 10(15) J. However, the amount of thermal energy originating from the individual heat flux processes has changed significantly over the past three decades.


Assuntos
Monitoramento Ambiental/métodos , Aquecimento Global , Água Subterrânea/química , Cidades , Alemanha , Temperatura Alta , Modelos Teóricos , Método de Monte Carlo , Estações do Ano , Sensibilidade e Especificidade , Temperatura
3.
Sci Total Environ ; 903: 166572, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633394

RESUMO

Built-up areas are known to heavily impact the thermal regime of the shallow subsurface. In many cities, the answer to densification is to increase the height and depth of buildings, which leads to a steady growth in the number of underground car parks. These underground car parks are heated by waste heat from car engines and are typically several degrees warmer than the surrounding subsurface, which makes them a heat source for ambient subsurface and groundwater. Thus, the objective of this study is to investigate the thermal impact of 31 underground car parks in six cities and to upscale the thermal impact that underground car parks have on the subsurface in Berlin, Germany. Underground car parks have daily, weekly, and seasonal temperature patterns that respond to air circulation and traffic frequency, resulting in net heat fluxes of 0.3 to 15.5 W/m2 at the measured sites. For the studied underground car parks in Berlin, the emitted annual thermal energy is about 0.65 PJ. Recycling this waste heat with geothermal heat pumps would provide a sustainable alternative for green energy and counteract the urban heat island by cooling of the shallow subsurface.

4.
Nat Commun ; 13(1): 3962, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803956

RESUMO

Despite the global interest in green energy alternatives, little attention has focused on the large-scale viability of recycling the ground heat accumulated due to urbanization, industrialization and climate change. Here we show this theoretical heat potential at a multi-continental scale by first leveraging datasets of groundwater temperature and lithology to assess the distribution of subsurface thermal pollution. We then evaluate subsurface heat recycling for three scenarios: a status quo scenario representing present-day accumulated heat, a recycled scenario with ground temperatures returned to background values, and a climate change scenario representing projected warming impacts. Our analyses reveal that over 50% of sites show recyclable underground heat pollution in the status quo, 25% of locations would be feasible for long-term heat recycling for the recycled scenario, and at least 83% for the climate change scenario. Results highlight that subsurface heat recycling warrants consideration in the move to a low-carbon economy in a warmer world.


Assuntos
Água Subterrânea , Temperatura Alta , Mudança Climática , Monitoramento Ambiental/métodos , Calefação , Urbanização
5.
J Contam Hydrol ; 238: 103757, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33465657

RESUMO

The objective of this study is to estimate hydraulic conductivities and biodegradation rate constants in a coal-tar contaminated aquifer by compound-specific isotope analysis (CSIA) and tracer-based (3H-3He) groundwater dating (TGD). In two observation wells downgradient from the contaminant source in situ biodegradation of o-xylene, toluene and naphthalene under sulfate-reducing redox conditions could be demonstrated using CSIA. Median biodegradation rate constants for o-xylene ranging between 0.08 and 0.22 a-1 were estimated. By using tracer-based groundwater dating in these two wells, hydraulic conductivities could be also estimated, which are in a similar range as k-values derived from sieve analysis, a pumping test and a calibrated groundwater flow model. These results clearly demonstrate the applicability of tracer-based groundwater dating for the determination of in situ hydraulic conductivities in aquifers without pumping contaminated groundwater. Finally, a sensitivity analysis is performed using a Monte Carlo simulation. These results indicate high sensitivities of the assumed effective porosity for the estimation of the hydraulic conductivity and the selected isotope enrichment factor for the biodegradation rate constant, respectively. Conversely, the outcome also evidently demonstrates the main limitations of the novel combined isotope approach for a successful implementation of monitored natural attenuation (MNA) at such field sites.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Isótopos de Carbono/análise , Poluentes Químicos da Água/análise , Xilenos
6.
J Contam Hydrol ; 239: 103791, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799016

RESUMO

Thermal use of the shallow subsurface and its aquifers (< 400 m) is steadily increasing. Currently, more than 2800 aquifer thermal energy storage (ATES) systems are operating worldwide alongside more than 1.2 million ground source heat pump (GSHP) systems in Europe alone. These rising numbers of shallow geothermal energy (SGE) systems will put additional pressure on typically vulnerable groundwater systems. Hitherto, suitable criteria to control the thermal use of groundwater in national and international legislations are often still at a preliminary state or even non-existing. While the European Union (EU) Water Framework Directive (WFD) defined the release of heat into the groundwater as pollution in the year 2000, the cooling of groundwater for heating purposes is not explicitly mentioned yet. In contrast, some national legislations have stricter guidelines. For example, in Germany, detrimental changes in physical, chemical and biological characteristics have to be avoided. In the Swiss water ordinance, it is even recommended that the groundwater biocenosis should be kept in natural state. However, exact definitions of 'detrimental changes' and 'natural state' are still missing. Hence, the current study provides an overview on natural and affected thermal groundwater conditions and international and national legislations of the thermal use of groundwater. Also, it presents recent studies on groundwater ecosystems and proposes a sustainable policy framework for the thermal use of groundwater. In addition to geothermal heat sources, other anthropogenic heat sources such as climate change, underground car parks, heated basements, district heating systems, land fills, wastewater treatment plants and mining are considered, although no legislation on these anthropogenic heat sources and their impact on groundwater is currently in place. Finally, we intend to answer the above question and provide recommendations for the further discussions on the joint use of shallow groundwater systems for drinking water production and thermal use.


Assuntos
Energia Geotérmica , Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Alemanha
7.
Sci Total Environ ; 745: 140846, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717598

RESUMO

The increased use of the urban subsurface for competing purposes, such as anthropogenic infrastructures and geothermal energy applications, leads to an urgent need for large-scale sophisticated modelling approaches for coupled mass and heat transfer. However, such models are subject to large uncertainties in model parameters, the physical model itself and in available measured data, which is often rare. Thus, the robustness and reliability of the computer model and its outcomes largely depend on successful parameter estimation and model calibration, which are hampered by the computational burden of large-scale coupled models. To tackle this problem, we develop a novel Bayesian approach for parameter estimation, which allows us to account for different sources of uncertainty, is capable of dealing with sparse field data and makes optimal use of the output data from expensive numerical model runs. This is achieved by combining output data from different models that represent the same physical problem, but at different levels of fidelity, e.g. reflected by different spatial resolution. By applying this new approach to a 1D analytical heat transfer model and a large-scale semi-3D numerical model while using synthetic data, we show that the accuracy and precision of parameter estimation by this multi-fidelity framework by far exceeds the standard single-fidelity results. The consideration of different error terms in the Bayesian framework also allows assessment of the model bias and the discrepancy between the different fidelity levels. These are emulated by Gaussian Process models, which facilitate re-iteration of the parameter estimation without additional model runs.

8.
Sci Total Environ ; 524-525: 427-39, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25930242

RESUMO

Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. The objective of this study is to quantify these AHFS and the heat flow they generate in two German cities, Karlsruhe and Cologne. Thus, statistical and spatial analytical heat flux models were developed for both cities. The models include the spatial representation of various sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that the district heating networks induce the largest AHFS with values greater than 60 W/m(2) and one order of magnitude higher than fluxes from other sources. A covariance analysis indicates that the spatial distribution of the total flux depends mainly on the thermal gradient in the unsaturated zone. On a citywide scale, basements and elevated ground surface temperatures are the dominant sources of heat flow. Overall, 2.1 PJ/a and 1.0 PJ/a of heat are accumulated on average in Karlsruhe and the western part of Cologne, respectively. Extracting this anthropogenically originated energy could sustainably supply significant parts of the urban heating demand. Furthermore, using this heat could also keep groundwater temperatures from rising further.

9.
Sci Total Environ ; 442: 123-33, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23178772

RESUMO

Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface.


Assuntos
Monitoramento Ambiental/métodos , Fenômenos Geológicos , Temperatura Alta , Urbanização/tendências , Cidades , Planejamento de Cidades , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA