Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mov Disord ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576116

RESUMO

BACKGROUND: FRMD5 variants were recently identified in patients with developmental delay, ataxia, and eye movement abnormalities. OBJECTIVES: We describe 2 patients presenting with childhood-onset ataxia, nystagmus, and seizures carrying pathogenic de novo FRMD5 variants. Weighted gene co-expression network analysis (WGCNA) was performed to gain insights into the function of FRMD5 in the brain. METHODS: Trio-based whole-exome sequencing was performed in both patients, and CoExp web tool was used to conduct WGCNA. RESULTS: Both patients presented with developmental delay, childhood-onset ataxia, nystagmus, and seizures. Previously unreported findings were diffuse choreoathetosis and dystonia of the hands (patient 1) and areas of abnormal magnetic resonance imaging signal in the white matter (patient 2). WGCNA showed that FRMD5 belongs to gene networks involved in neurodevelopment and oligodendrocyte function. CONCLUSIONS: We expanded the phenotype of FRMD5-related disease and shed light on its role in brain function and development. We recommend including FRMD5 in the genetic workup of childhood-onset ataxia and nystagmus. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Brain ; 146(7): 2730-2738, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36860166

RESUMO

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas/genética
3.
Clin Genet ; 103(1): 103-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071510

RESUMO

Keppen-Lubinsky syndrome is caused by pathogenic variants in KCNJ6, which encodes the inwardly rectifying channel subfamily J6. The four confirmed cases reported to date were characterized by severe intellectual disability, global developmental delay, feeding difficulties, and dysmorphic features. All but one of the cases also had a severe form of lipodystrophy, resulting in tightly adherent facial skin and appearance of premature aging. Here, we describe a 36-year-old female with a de novo pathogenic variant in KCNJ6 (NM_002240.5: c.460G>T; p.(Gly154Cys)) presenting with mild intellectual disability, subtle dysmorphic features, obsessive-compulsive disorder, and an exaggerated startle response. This case indicates that KCNJ6-related disorders should be considered in patients with less pronounced dysmorphic features and milder cognitive impairment, as well as in patients with startle disorders.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Reflexo de Sobressalto , Humanos , Reflexo de Sobressalto/genética
4.
Mov Disord ; 38(2): 347-353, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420574

RESUMO

BACKGROUND: Heterozygous NKX2-1 loss-of-function variants cause combinations of hyperkinetic movement disorders (MDs, particularly childhood-onset chorea), pulmonary dysfunction, and hypothyroidism. Mobile element insertions (MEIs) are potential disease-causing structural variants whose detection in routine diagnostics remains challenging. OBJECTIVE: To establish the molecular diagnosis of two first-degree relatives with clinically suspected NKX2-1-related disorder who had negative NKX2-1 Sanger (SS), whole-exome (WES), and whole-genome (WGS) sequencing. METHODS: The proband's WES was analyzed for MEIs. A candidate MEI in NKX2-1 underwent optimized SS after plasmid cloning. Functional studies exploring NKX2-1 haploinsufficiency at RNA and protein levels were performed. RESULTS: A 347-bp AluYa5 insertion with a 65-bp poly-A tail followed by a 16-bp duplication of the pre-insertion wild-type sequence in exon 3 of NKX2-1 (ENST00000354822.7:c.556_557insAlu541_556dup) segregated with the disease phenotype. CONCLUSIONS: We identified a de novo exonic AluYa5 insertion causing NKX2-1-related disorder in SS/WES/WGS-negative cases, suggesting that MEI analysis of short-read sequencing data or targeted long-read sequencing could unmask the molecular diagnosis of unsolved MD cases. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Coreia , Humanos , Coreia/genética , Fenótipo , Éxons , Exoma , Mutação
5.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
6.
Mov Disord ; 38(8): 1527-1535, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310233

RESUMO

BACKGROUND: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. OBJECTIVES: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. METHODS: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. RESULTS: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. CONCLUSIONS: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/psicologia , Testes Genéticos , Aconselhamento
7.
Mov Disord ; 38(8): 1384-1396, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365908

RESUMO

Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Testes Genéticos
8.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236446

RESUMO

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismo
9.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443317

RESUMO

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Assuntos
Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Distonia/genética , Complexo Mediador/genética , Malformações do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Catarata/genética , Criança , Pré-Escolar , Epilepsia/genética , Variação Genética , Humanos , Lactente , Fenótipo , Sequenciamento do Exoma
10.
Mov Disord ; 37(1): 137-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596301

RESUMO

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aminopeptidases , Distonia , Distúrbios Distônicos , Mutação com Perda de Função , Aminopeptidases/genética , Distonia/genética , Distúrbios Distônicos/genética , Exoma , Humanos , Mutação , Linhagem , Fenótipo
11.
Ann Neurol ; 88(5): 867-877, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808683

RESUMO

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Assuntos
Distonia/genética , Doenças por Armazenamento dos Lisossomos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Efeitos Psicossociais da Doença , Distonia/patologia , Exoma/genética , Feminino , Fibroblastos/patologia , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem
12.
Mov Disord ; 36(10): 2225-2243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34155691

RESUMO

Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Diester Fosfórico Hidrolases , 3',5'-AMP Cíclico Fosfodiesterases , AMP Cíclico , GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Humanos , Diester Fosfórico Hidrolases/genética
13.
J Neural Transm (Vienna) ; 128(4): 483-498, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386558

RESUMO

Dystonia is a clinically, genetically, and biologically heterogeneous hyperkinetic movement disorder caused by the dysfunctional activity of neural circuits involved in motor control. Our understanding of the molecular mechanisms underlying dystonia pathogenesis has tremendously grown thanks to the accelerated discovery of genes associated with monogenic dystonias (DYT-genes). Genetic discoveries, together with the development of a growing number of cellular and animal models of genetic defects responsible for dystonia, are allowing the identification of several areas of functional convergence among the protein products of multiple DYT-genes. Furthermore, unexpected functional links are being discovered in the downstream pathogenic molecular mechanisms of DYT-genes that were thought to be unrelated based on their primary molecular functions. Examples of these advances are the recognition that multiple DYT-genes are involved in (1) endoplasmic reticulum function and regulation of the integrated stress response (ISR) through Eukaryotic initiation factor 2 alpha signaling; (2) gene transcription modulation during neurodevelopment; (3) pre-and post-synaptic nigrostriatal dopaminergic signaling; and (4) presynaptic neurotransmitter vesicle release. More recently, genetic defects in the endo-lysosomal and autophagy pathways have also been implicated in the molecular pathophysiology of dystonia, suggesting the existence of mechanistic overlap with other movement disorders, such as Parkinson's disease. Importantly, the recognition that multiple DYT-genes coalesce in shared biological pathways is a crucial advance in our understanding of dystonias and will aid in the development of more effective therapeutic strategies by targeting these convergent molecular pathways.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Animais , Distonia/genética , Distúrbios Distônicos/genética , Reconhecimento Psicológico , Transmissão Sináptica
14.
Brain ; 143(9): 2771-2787, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889528

RESUMO

Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson's disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen and white matter modules, and a significant enrichment of the heritability of Parkinson's disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.


Assuntos
Distúrbios Distônicos/genética , Redes Reguladoras de Genes/genética , Transtornos Mentais/genética , Neurônios/fisiologia , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/epidemiologia , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/epidemiologia
15.
Am J Hum Genet ; 98(4): 763-71, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058447

RESUMO

Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of childhood-onset chorea and characteristic brain MRI showing symmetrical bilateral striatal lesions. All individuals were identified to carry a de novo heterozygous mutation in PDE10A (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs. PDE10A contributes to the regulation of the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both substitutions affect highly conserved amino acids located in the regulatory GAF-B domain, which, by binding to cAMP, stimulates the activity of the PDE10A catalytic domain. In silico modeling showed that the altered residues are located deep in the binding pocket, where they are likely to alter cAMP binding properties. In vitro functional studies showed that neither substitution affects the basal PDE10A activity, but they severely disrupt the stimulatory effect mediated by cAMP binding to the GAF-B domain. The identification of PDE10A mutations as a cause of chorea further motivates the study of cAMP signaling in MSNs and highlights the crucial role of striatal cAMP signaling in the regulation of basal ganglia circuitry. Pharmacological modulation of this pathway could offer promising etiologically targeted treatments for chorea and other hyperkinetic movement disorders.


Assuntos
Coreia/genética , Corpo Estriado/patologia , Mutação , Diester Fosfórico Hidrolases/genética , Sequência de Aminoácidos , Animais , Criança , Coreia/diagnóstico , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Conformação Proteica , Alinhamento de Sequência , Transdução de Sinais , Adulto Jovem
16.
Ann Neurol ; 83(6): 1089-1095, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518281

RESUMO

VPS13 protein family members VPS13A through VPS13C have been associated with various recessive movement disorders. We describe the first disease association of rare recessive VPS13D variants including frameshift, missense, and partial duplication mutations with a novel complex, hyperkinetic neurological disorder. The clinical features include developmental delay, a childhood onset movement disorder (chorea, dystonia, or tremor), and progressive spastic ataxia or paraparesis. Characteristic brain magnetic resonance imaging shows basal ganglia or diffuse white matter T2 hyperintensities as seen in Leigh syndrome and choreoacanthocytosis. Muscle biopsy in 1 case showed mitochondrial aggregates and lipidosis, suggesting mitochondrial dysfunction. These findings underline the importance of the VPS13 complex in neurological diseases and a possible role in mitochondrial function. Ann Neurol 2018;83:1089-1095.


Assuntos
Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Gânglios da Base/patologia , Encéfalo/patologia , Criança , Humanos , Doença de Leigh/patologia , Imageamento por Ressonância Magnética/métodos , Espasticidade Muscular/patologia , Linhagem
20.
Mov Disord ; 34(10): 1516-1527, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216378

RESUMO

BACKGROUND: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. OBJECTIVE: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged <18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. METHODS: Whole-exome sequencing or customized gene panels were used to screen a cohort of 65 patients who had previously tested negative for all other known dystonia-associated genes. RESULTS: We identified 14 patients (21.5%) carrying KMT2B variants, of which 1 was classified as a variant of unknown significance. We also identified 2 additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudocranial generalization. Eight patients underwent pallidal DBS with a median decrease of Burke-Fahn-Marsden Dystonia Rating Scale-Motor score of 38.5% in the long term. We also report on 4 asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. CONCLUSIONS: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome, often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to DBS is characteristic of DYT-KMT2B dystonia. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Histona-Lisina N-Metiltransferase/genética , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA