Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730565

RESUMO

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Assuntos
Algoritmos , Neoplasias Renais , Rim , Imagens de Fantasmas , Humanos , Neoplasias Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Masculino , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Suspensão da Respiração
2.
J Magn Reson Imaging ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380700

RESUMO

BACKGROUND: T2 mapping is valuable to evaluate pathophysiology in kidney disease. However, variations in T2 relaxation time measurements across MR scanners and vendors may occur requiring additional correction. PURPOSE: To harmonize renal T2 measurements between MR vendor platforms, and use an extended-phase-graph-based fitting method ("StimFit") to correct stimulated echoes and reduce between-vendor variations. STUDY TYPE: Prospective. SUBJECTS: 8 healthy "travelling" volunteers (37.5% female, 32 ± 6 years) imaged on four MRI systems across three vendors at four sites, 10 healthy volunteers (50% female, 32 ± 8 years) scanned multiple times on a given MR scanner for repeatability evaluation. ISMRM/NIST system phantom scanned for evaluation of T2 accuracy. FIELD STRENGTH/SEQUENCE: 3T, multiecho spin-echo sequence. ASSESSMENT: T2 images fit using conventional monoexponential fitting and "StimFit." Mean absolute percentage error (MAPE) of phantom measurements with reference T2 values. Average cortex and medulla T2 values compared between MR vendors, with masks obtained from T2 -weighted images and T1 maps. Full-width-at-half-maximum (FWHM) T2 distributions to evaluate local homogeneity of measurements. STATISTICAL TESTS: Coefficient of variation (CV), linear mixed-effects model, analysis of variance, student's t-tests, Bland-Altman plots, P-value <0.05 considered statistically significant. RESULTS: In the ISMRM/NIST phantom, "StimFit" reduced the MAPE from 4.9%, 9.1%, 24.4%, and 18.1% for the four sites (three vendors) to 3.3%, 3.0%, 6.6%, and 4.1%, respectively. In vivo, there was a significant difference in kidney T2 measurements between vendors using a monoexponential fit, but not with "StimFit" (P = 0.86 and 0.92, cortex and medulla, respectively). The intervendor CVs of T2 measures were reduced from 8.0% to 2.6% (cortex) and 7.1% to 2.8% (medulla) with StimFit, resulting in no significant differences for the CVs of intravendor repeat acquisitions (P = 0.13 and 0.05). "StimFit" significantly reduced the FWHM of T2 distributions in the cortex and whole kidney. DATA CONCLUSION: Stimulated-echo correction reduces renal T2 variation across MR vendor platforms. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

3.
Clin Endocrinol (Oxf) ; 99(3): 233-245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37272391

RESUMO

OBJECTIVE: Primary hyperparathyroidism is a common endocrine disorder, with 80% of all cases usually caused by one single hyperfunctioning parathyroid adenoma. Conventional imaging modalities for the diagnostic work-up of primary hyperparathyroidism (PHPT) include ultrasound of the neck, 99mTc-sestamibi scintigraphy, and four-dimensional computed tomography (4D-CT). However, the role of other imaging modalities, such as 11C-methionine PET/CT, in the care pathway for PHPT is currently unclear. Here, we report our experience of the diagnostic utility of 11C-methionine PET/CT in a single-center patient cohort (n = 45). DESIGN: Retrospective single-center cohort study. PATIENTS AND MEASUREMENTS: The data of eligible patients that underwent 11C-methionine PET/CT between 2014 and 2022 at Addenbrooke's Hospital (Cambridge, UK) were collected and analyzed. The clinical utility of imaging modalities was determined by comparing the imaging result with histopathological and biochemical outcomes following surgery. RESULTS: In patients with persistent primary hyperparathyroidism following previous surgery, 11C-methionine PET/CT identified a candidate lesion in 6 of 10 patients (60.0%), and histologically confirmed in 5 (50.0%). 11C-methionine PET/CT also correctly identified a parathyroid adenoma in 9 out of 12 patients (75.0%) that failed to be localized on other imaging modalities. 11C-methionine PET/CT had a sensitivity of 70.0% (95% CI 55.8 - 84.2%) for the detection of parathyroid adenomas. CONCLUSIONS: This study highlights a diagnostic role for 11C-methionine PET/CT in patients that have undergone unsuccessful prior surgery or have equivocal or negative prior imaging results, aiding localization and a targeted surgical approach.


Assuntos
Adenoma , Hiperparatireoidismo Primário , Neoplasias das Paratireoides , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hiperparatireoidismo Primário/diagnóstico por imagem , Hiperparatireoidismo Primário/etiologia , Neoplasias das Paratireoides/diagnóstico por imagem , Neoplasias das Paratireoides/complicações , Estudos Retrospectivos , Estudos de Coortes , Adenoma/diagnóstico , Adenoma/diagnóstico por imagem , Metionina , Tecnécio Tc 99m Sestamibi , Racemetionina , Reino Unido , Glândulas Paratireoides
4.
Br J Cancer ; 127(6): 1051-1060, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739300

RESUMO

BACKGROUND: Surgery for renal cell carcinoma (RCC) with venous tumour thrombus (VTT) extension into the renal vein (RV) and/or inferior vena cava (IVC) has high peri-surgical morbidity/mortality. NAXIVA assessed the response of VTT to axitinib, a potent tyrosine kinase inhibitor. METHODS: NAXIVA was a single-arm, multi-centre, Phase 2 study. In total, 20 patients with resectable clear cell RCC and VTT received upto 8 weeks of pre-surgical axitinib. The primary endpoint was percentage of evaluable patients with VTT improvement by Mayo level on MRI. Secondary endpoints were percentage change in surgical approach and VTT length, response rate (RECISTv1.1) and surgical morbidity. RESULTS: In all, 35% (7/20) patients with VTT had a reduction in Mayo level with axitinib: 37.5% (6/16) with IVC VTT and 25% (1/4) with RV-only VTT. No patients had an increase in Mayo level. In total, 75% (15/20) of patients had a reduction in VTT length. Overall, 41.2% (7/17) of patients who underwent surgery had less invasive surgery than originally planned. Non-responders exhibited lower baseline microvessel density (CD31), higher Ki67 and exhausted or regulatory T-cell phenotype. CONCLUSIONS: NAXIVA provides the first Level II evidence that axitinib downstages VTT in a significant proportion of patients leading to reduction in the extent of surgery. CLINICAL TRIAL REGISTRATION: NCT03494816.


Assuntos
Axitinibe , Carcinoma de Células Renais , Neoplasias Renais , Trombose , Axitinibe/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/cirurgia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/cirurgia , Terapia Neoadjuvante , Nefrectomia , Estudos Retrospectivos , Trombose/prevenção & controle
5.
J Magn Reson Imaging ; 56(4): 1042-1052, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35224803

RESUMO

BACKGROUND: Three-dimensional variable flip angle (VFA) methods are commonly used for T1 mapping of the liver, but there is no data on the accuracy, repeatability, and reproducibility of this technique in this organ in a multivendor setting. PURPOSE: To measure bias, repeatability, and reproducibility of VFA T1 mapping in the liver. STUDY TYPE: Prospective observational. POPULATION: Eight healthy volunteers, four women, with no known liver disease. FIELD STRENGTH/SEQUENCE: 1.5-T and 3.0-T; three-dimensional steady-state spoiled gradient echo with VFAs; Look-Locker. ASSESSMENT: Traveling volunteers were scanned twice each (30 minutes to 3 months apart) on six MRI scanners from three vendors (GE Healthcare, Philips Medical Systems, and Siemens Healthineers) at two field strengths. The maximum period between the first and last scans among all volunteers was 9 months. Volunteers were instructed to abstain from alcohol intake for at least 72 hours prior to each scan and avoid high cholesterol foods on the day of the scan. STATISTICAL TESTS: Repeated measures ANOVA, Student t-test, Levene's test of variances, and 95% significance level. The percent error relative to literature liver T1 in healthy volunteers was used to assess bias. The relative error (RE) due to intrascanner and interscanner variation in T1 measurements was used to assess repeatability and reproducibility. RESULTS: The 95% confidence interval (CI) on the mean bias and mean repeatability RE of VFA T1 in the healthy liver was 34 ± 6% and 10 ± 3%, respectively. The 95% CI on the mean reproducibility RE at 1.5 T and 3.0 T was 29 ± 7% and 25 ± 4%, respectively. DATA CONCLUSION: Bias, repeatability, and reproducibility of VFA T1 mapping in the liver in a multivendor setting are similar to those reported for breast, prostate, and brain. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas , Próstata , Reprodutibilidade dos Testes
6.
MAGMA ; 33(1): 199-215, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768797

RESUMO

Harmonization of acquisition and analysis protocols is an important step in the validation of BOLD MRI as a renal biomarker. This harmonization initiative provides technical recommendations based on a consensus report with the aim to move towards standardized protocols that facilitate clinical translation and comparison of data across sites. We used a recently published systematic review paper, which included a detailed summary of renal BOLD MRI technical parameters and areas of investigation in its supplementary material, as the starting point in developing the survey questionnaires for seeking consensus. Survey data were collected via the Delphi consensus process from 24 researchers on renal BOLD MRI exam preparation, data acquisition, data analysis, and interpretation. Consensus was defined as ≥ 75% unanimity in response. Among 31 survey questions, 14 achieved consensus resolution, 12 showed clear respondent preference (65-74% agreement), and 5 showed equal (50/50%) split in opinion among respondents. Recommendations for subject preparation, data acquisition, processing and reporting are given based on the survey results and review of the literature. These technical recommendations are aimed towards increased inter-site harmonization, a first step towards standardization of renal BOLD MRI protocols across sites. We expect this to be an iterative process updated dynamically based on progress in the field.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Animais , Biomarcadores/metabolismo , Consenso , Técnica Delphi , Humanos , Rim/metabolismo , Imageamento por Ressonância Magnética/normas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Inquéritos e Questionários , Pesquisa Translacional Biomédica/tendências
7.
Ultraschall Med ; 40(6): 757-763, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29879743

RESUMO

PURPOSE: Optoacoustic imaging with ultrasound (OPUS) can assess in-vivo perfusion/oxygenation through surrogate measures of oxy, deoxy and total hemoglobin content in tissues. The primary aim of our study was to evaluate the ability of OPUS to detect physiological changes in the breast during the menstrual cycle and to determine qualitative/quantitative metrics of normal parenchymal tissue in pre-/post-menopausal women. The secondary aim was to assess the technique's repeatability. MATERIALS AND METHODS: We performed a prospective ethically approved study in volunteers using OPUS (700, 800 and 850 nm wavelengths) in the proliferative/follicular and secretory phase of the menstrual cycle. Regions of interest (ROIs) were drawn on the most superficial region of fibroglandular tissue and same-day intra-observer repeatability was assessed. We used t-tests to interrogate differences in the OPUS measurements due to hormonal changes and interclass correlation coefficients/Bland-Altman plots to evaluate the repeatability of mean ROI signal intensities. RESULTS: 22 pre-menopausal and 8 post-menopausal volunteers were recruited. 21 participants underwent repeatability examinations. OPUS intensity values were significantly higher (p < 0.0001) at all excitation wavelengths in the secretory compared to the proliferative/follicular phase. Post-menopausal volunteers showed similar optoacoustic values to the proliferative/follicular phase of pre-menopausal volunteers. The repeatability of the technique was comparable to other handheld ultrasound modalities. CONCLUSION: OPUS detects changes in perfusion/vascularity related to the menstrual cycle and menopausal status of breast parenchyma.


Assuntos
Neoplasias da Mama , Hormônios , Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Hormônios/fisiologia , Humanos , Ciclo Menstrual , Óptica e Fotônica , Estudos Prospectivos
8.
Nephrol Dial Transplant ; 33(suppl_2): ii22-ii28, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137579

RESUMO

Tissue hypoxia plays a key role in the development and progression of many kidney diseases. Blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) is the most promising imaging technique to monitor renal tissue oxygenation in humans. BOLD-MRI measures renal tissue deoxyhaemoglobin levels voxel by voxel. Increases in its outcome measure R2* (transverse relaxation rate expressed as per second) correspond to higher deoxyhaemoglobin concentrations and suggest lower oxygenation, whereas decreases in R2* indicate higher oxygenation. BOLD-MRI has been validated against micropuncture techniques in animals. Its reproducibility has been demonstrated in humans, provided that physiological and technical conditions are standardized. BOLD-MRI has shown that patients suffering from chronic kidney disease (CKD) or kidneys with severe renal artery stenosis have lower tissue oxygenation than controls. Additionally, CKD patients with the lowest cortical oxygenation have the worst renal outcome. Finally, BOLD-MRI has been used to assess the influence of drugs on renal tissue oxygenation, and may offer the possibility to identify drugs with nephroprotective or nephrotoxic effects at an early stage. Unfortunately, different methods are used to prepare patients, acquire MRI data and analyse the BOLD images. International efforts such as the European Cooperation in Science and Technology (COST) action 'Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease' (PARENCHIMA) are aiming to harmonize this process, to facilitate the introduction of this technique in clinical practice in the near future. This article represents an extensive overview of the studies performed in this field, summarizes the strengths and weaknesses of the technique, provides recommendations about patient preparation, image acquisition and analysis, and suggests clinical applications and future developments.


Assuntos
Biomarcadores/sangue , Rim/fisiologia , Oxigênio/metabolismo , Guias de Prática Clínica como Assunto/normas , Insuficiência Renal Crônica/fisiopatologia , Humanos , Hipóxia , Rim/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio
9.
Nephrol Dial Transplant ; 33(suppl_2): ii29-ii40, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137580

RESUMO

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Rim/patologia , Guias de Prática Clínica como Assunto/normas , Insuficiência Renal Crônica/fisiopatologia , Humanos
10.
Nephrol Dial Transplant ; 33(suppl_2): ii4-ii14, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137584

RESUMO

Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA's vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques.


Assuntos
Biomarcadores/análise , Imageamento por Ressonância Magnética/métodos , Insuficiência Renal Crônica/classificação , Insuficiência Renal Crônica/patologia , Progressão da Doença , Humanos , Insuficiência Renal Crônica/terapia
12.
Semin Nucl Med ; 53(4): 530-538, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36966020

RESUMO

Tumors of the pituitary gland, although mostly benign adenomas, are a cause of significant morbidity and even excess mortality due to local compressive effects (eg visual loss, hypopituitarism) and unregulated hormone secretion (eg acromegaly or Cushing Disease). Surgery, radiotherapy, and medical management (sometimes in combination) may be needed to mitigate the effects of tumor expansion and endocrine dysfunction. Magnetic resonance imaging (MRI) plays a central role in treatment planning for most patients. However, it does not always reliably identify the site(s) of primary or recurrent disease, especially where post-treatment remodeling results in indeterminate anatomical appearances. In these contexts, molecular imaging is a potential game-changer, allowing precise localization of sites of active disease and enabling safe and effective targeted intervention when patients would otherwise be consigned to expensive life-long medication. For pituitary and parasellar imaging, PET is the preferred modality due to its superior spatial resolution and sensitivity compared with SPECT, and an array of PET radioligands have been studied in different pituitary adenoma (PA) subtypes. While 18F-fluorodeoxyglucose (18F-FDG) is widely available, significant heterogeneity in tumoral uptake has limited its use. Instead, ligands targeting specific molecular pathways relevant to PA biology (eg somatostatin or dopamine receptor expression, amino acid uptake) are increasingly preferred and are beginning to find application in routine clinical practice. In addition, novel approaches to distinguish adenomatous tissue from normal gland (eg through comparison of images obtained with different radiotracers) and increase confidence that a suspected abnormal focus is indeed pathological (eg through subtraction imaging) have been proposed. It is likely therefore that molecular imaging will continue to find increasing application in the management of pituitary tumors just as it already does in other endocrine disorders.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/radioterapia , Adenoma/metabolismo , Adenoma/patologia , Adenoma/cirurgia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Imagem Molecular
13.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900353

RESUMO

There is an unmet clinical need for imaging agents capable of detecting early evidence of tumor cell death, since the timing, extent, and distribution of cell death in tumors following treatment can give an indication of treatment outcome. We describe here 68Ga-labeled C2Am, which is a phosphatidylserine-binding protein, for imaging tumor cell death in vivo using positron emission tomography (PET). A one-pot synthesis of 68Ga-C2Am (20 min, 25 °C, >95% radiochemical purity) has been developed, using a NODAGA-maleimide chelator. The binding of 68Ga-C2Am to apoptotic and necrotic tumor cells was assessed in vitro using human breast and colorectal cancer cell lines, and in vivo, using dynamic PET measurements in mice implanted subcutaneously with the colorectal tumor cells and treated with a TRAIL-R2 agonist. 68Ga-C2Am showed predominantly renal clearance and low retention in the liver, spleen, small intestine, and bone and generated a tumor-to-muscle (T/m) ratio of 2.3 ± 0.4, at 2 h post probe administration and at 24 h following treatment. 68Ga-C2Am has the potential to be used in the clinic as a PET tracer for assessing early treatment response in tumors.

14.
EJNMMI Phys ; 10(1): 34, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261547

RESUMO

BACKGROUND: Image optimization is a key step in clinical nuclear medicine, and phantoms play an essential role in this process. However, most phantoms do not accurately reflect the complexity of human anatomy, and this presents a particular challenge when imaging endocrine glands to detect small (often subcentimeter) tumors. To address this, we developed a novel phantom for optimization of positron emission tomography (PET) imaging of the human pituitary gland. Using radioactive 3D printing, phantoms were created which mimicked the distribution of 11C-methionine in normal pituitary tissue and in a small tumor embedded in the gland (i.e., with no inactive boundary, thereby reproducing the in vivo situation). In addition, an anatomical phantom, replicating key surrounding structures [based on computed tomography (CT) images from an actual patient], was created using material extrusion 3D printing with specialized filaments that approximated the attenuation properties of bone and soft tissue. RESULTS: The phantom enabled us to replicate pituitary glands harboring tumors of varying sizes (2, 4 and 6 mm diameters) and differing radioactive concentrations (2 ×, 5 × and 8 × the normal gland). The anatomical phantom successfully approximated the attenuation properties of surrounding bone and soft tissue. Two iterative reconstruction algorithms [ordered subset expectation maximization (OSEM); Bayesian penalized likelihood (BPL)] with a range of reconstruction parameters (e.g., 3, 5, 7 and 9 OSEM iterations with 24 subsets; BPL regularization parameter (ß) from 50 to 1000) were tested. Images were analyzed quantitatively and qualitatively by eight expert readers. Quantitatively, signal was the highest using BPL with ß = 50; noise was the lowest using BPL with ß = 1000; contrast was the highest using BPL with ß = 100. The qualitative review found that accuracy and confidence were the highest when using BPL with ß = 400. CONCLUSIONS: The development of a bespoke phantom has allowed the identification of optimal parameters for molecular pituitary imaging: BPL reconstruction with TOF, PSF correction and a ß value of 400; in addition, for small (< 4 mm) tumors with low contrast (2:1 or 5:1), sensitivity may be improved using a ß value of 100. Together, these findings should increase tumor detection and confidence in reporting scans.

15.
Nephrol Dial Transplant ; 27(3): 1013-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21856759

RESUMO

BACKGROUND: Stenting of the stenosed renal artery is commonly employed in atheromatous renovascular disease (ARVD) in order to revascularize the affected kidney. However, it is still far from clear which patient subgroups should be revascularized as stenting carries small but significant risks. We have previously demonstrated that the ratio of magnetic resonance-measured renal volume to isotopic single kidney glomerular filtration rate (isoSK-GFR) is higher in kidneys which show functional improvement after revascularization. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) does not require contrast administration and is sensitive to changes in tissue concentration of deoxyhaemoglobin. METHODS: In this study, we test the hypothesis that baseline BOLD R2* map signal and R2*:isoSK-GFR ratio will provide an additional independent predictive biomarker of response to revascularization. RESULTS: Studies were performed in 28 subjects (16 ARVD and 12 controls). All subjects had R2* mapping and isoSK-GFR measured at baseline and at 4-month follow-up. MRI data were collected on a 3 T whole-body MRI scanner using a coronal dual-echo, 2D gradient-echo breath-hold acquisition. Parenchymal regions of interest (ROIs) were drawn on a representative slice through the middle of the kidney. Parametric maps of R2* were generated and mean values of R2* were calculated for every ROI. The ratio of R2*:isoSK-GFR at baseline was significantly greater in kidneys where renal function improved (5.91 ± 6.51) versus stable (1.78 ± 1.11), deteriorated (2.15 ± 1.79) or controls (1.5 ± 0.91), P = 0.003. R2*:isoSK-GFR ratio that was greater than 95% confidence interval of the control kidneys was 66.7% sensitive, but 85.7% specific in predicting a positive renal functional outcome. CONCLUSIONS: These pilot data show that BOLD R2* imaging, presumably by detecting intra-renal deoxyhaemoglobin in still viable 'hibernating' parenchyma, coupled with isoSK-GFR may provide an effective predictive biomarker for positive renal functional response to revascularization. R2* imaging is non-invasive, quick to perform and could provide further insight into reversible parenchymal changes in ARVD kidneys.


Assuntos
Aterosclerose/complicações , Aterosclerose/patologia , Nefropatias/etiologia , Nefropatias/patologia , Rim/irrigação sanguínea , Imageamento por Ressonância Magnética , Oxigênio/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Doença Crônica , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Nefropatias/sangue , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico , Fatores de Risco , Stents
16.
Eur Radiol ; 22(6): 1320-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415410

RESUMO

OBJECTIVE: To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. METHODS: The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. RESULTS: Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. CONCLUSIONS: These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. KEY POINTS: • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.


Assuntos
Gadolínio DTPA/farmacocinética , Taxa de Filtração Glomerular/fisiologia , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Artéria Renal/fisiologia , Circulação Renal/fisiologia , Adulto , Algoritmos , Simulação por Computador , Meios de Contraste/farmacocinética , Meios de Contraste/normas , Feminino , Gadolínio DTPA/normas , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Rim/anatomia & histologia , Imageamento por Ressonância Magnética/normas , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Reino Unido , Adulto Jovem
17.
EJNMMI Res ; 12(1): 26, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524902

RESUMO

BACKGROUND: Pituitary adenomas (PA) affect ~ 1:1200 of the population and can cause a wide range of symptoms due to hormone over-secretion, loss of normal pituitary gland function and/or compression of visual pathways, resulting in significantly impaired quality of life. Surgery is potentially curative if the location of the adenoma can be determined. However, standard structural (anatomical) imaging, in the form of MRI, is unable to locate all tumors, especially microadenomas (< 1 cm diameter). In such cases, functional imaging [11C-methionine PET/CT (Met-PET)] can facilitate tumor detection, although may be inconclusive when the adenoma is less metabolically active. We, therefore, explored whether subtraction imaging, comparing findings between two Met-PET scans with medical therapy-induced suppression of tumor activity in the intervening period, could increase confidence in adenoma localization. In addition, we assessed whether normalization to a reference region improved consistency of pituitary gland signal in healthy volunteers who underwent two Met-PET scans without medical suppression. RESULTS: We found that the mean percentage differences in maximum pituitary uptake between two Met-PET scans in healthy volunteers were 2.4% for (SUVr) [cerebellum], 8.8% for SUVr [pons], 5.2% for SUVr [gray matter] and 23.1% for the SUVbw [no region]. Laterality, as measured by contrast-noise ratio (CNR), indicated the correct location of the adenoma in all three image types with mean CNR values of 6.2, 8.1 and 11.1 for SUVbw, SUVbwSub and SUVrSub [cerebellum], respectively. Subtraction imaging improved CNR in 60% and 100% of patients when using images generated from SUVbw [no region] and SUVr [cerebellum] scans compared to standard clinical SUVbw imaging. CONCLUSIONS: Met-PET scans should be normalized to the cerebellum to minimize the effects of physiological variation in pituitary gland uptake of 11C-methionine, especially when comparing serial imaging. Subtraction imaging following endocrine suppression of tumor function improved lateralization of PA when compared with single time point clinical Met-PET but, importantly, only if the images were normalized to the cerebellum prior to subtraction.

18.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053497

RESUMO

Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer.

19.
EJNMMI Phys ; 8(1): 38, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909154

RESUMO

PURPOSE: Phantoms are routinely used in molecular imaging to assess scanner performance. However, traditional phantoms with fillable shapes do not replicate human anatomy. 3D-printed phantoms have overcome this by creating phantoms which replicate human anatomy which can be filled with radioactive material. The problem with these is that small objects suffer to a greater extent than larger objects from the effects of inactive walls, and therefore, phantoms without these are desirable. The purpose of this study was to explore the feasibility of creating resin-based 3D-printed phantoms using 18F. METHODS: Radioactive resin was created using an emulsion of printer resin and 18F-FDG. A series of test objects were printed including twenty identical cylinders, ten spheres with increasing diameters (2 to 20 mm), and a double helix. Radioactive concentration uniformity, printing accuracy and the amount of leaching were assessed. RESULTS: Creating radioactive resin was simple and effective. The radioactive concentration was uniform among identical objects; the CoV of the signal was 0.7% using a gamma counter. The printed cylinders and spheres were found to be within 4% of the model dimensions. A double helix was successfully printed as a test for the printer and appeared as expected on the PET scanner. The amount of radioactivity leached into the water was measurable (0.72%) but not visible above background on the imaging. CONCLUSIONS: Creating an 18F radioactive resin emulsion is a simple and effective way to create accurate and complex phantoms without inactive walls. This technique could be used to print clinically realistic phantoms. However, they are single use and cannot be made hollow without an exit hole. Also, there is a small amount of leaching of the radioactivity to take into consideration.

20.
Nucl Med Biol ; 92: 53-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563612

RESUMO

Targeting specific cell membrane markers for both diagnostic imaging and radionuclide therapy is a rapidly evolving field in cancer research. Some of these applications have now found a role in routine clinical practice and have been shown to have a significant impact on patient management. Several molecular targets are being investigated in ongoing clinical trials and show promise for future implementation. Advancements in molecular biology have facilitated the identification of new cancer-specific targets for radiopharmaceutical development.


Assuntos
Neoplasias/diagnóstico , Neoplasias/radioterapia , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA