Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 170(3): 1878-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754669

RESUMO

Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant's genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Modelos Genéticos , Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Internet , Metaboloma/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie , Nicotiana/genética , Nicotiana/metabolismo
2.
BMC Plant Biol ; 14: 199, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25928247

RESUMO

BACKGROUND: Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. RESULTS: We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. CONCLUSION: The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Fosfatos , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/microbiologia , Simbiose
3.
Nat Plants ; 5(5): 498-504, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31040442

RESUMO

Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton1-3. However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth2-4. We generated stable transgenic cotton plants expressing fluorescent markers of the actin and microtubule cytoskeleton. Live-cell imaging revealed that elongating cotton fibres assemble a cortical filamentous actin network that extends along the cell axis to finally form actin strands with closed loops in the tapered fibre tip. Analyses of F-actin network properties indicate that cotton fibres have a unique actin organization that blends features of both diffuse and tip growth modes. Interestingly, typical actin organization and endosomal vesicle aggregation found in tip-growing cell apices were not observed in fibre tips. Instead, endomembrane compartments were evenly distributed along the elongating fibre cells and moved bi-directionally along the fibre shank to the fibre tip. Moreover, plus-end tracked microtubules transversely encircled elongating fibre shanks, reminiscent of diffusely growing cells. Collectively, our findings indicate that cotton fibres elongate via a unique tip-biased diffuse growth mode.


Assuntos
Fibra de Algodão , Citoesqueleto/ultraestrutura , Gossypium/ultraestrutura , Actinas/ultraestrutura , Proteínas de Fluorescência Verde , Imageamento Tridimensional , Microscopia Intravital/métodos , Microtúbulos/ultraestrutura
4.
F1000Prime Rep ; 7: 23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750741

RESUMO

Over the last few decades, our understanding of directed cell growth in different organisms has substantially improved. Tip-growing cells in plants elongate rapidly via targeted deposition of cell wall and membrane material at the cell apex, and use turgor pressure as a driving force for expansion. This type of polar growth requires a high degree of coordination between a plethora of cellular and extracellular components and compounds, including calcium dynamics, apoplastic reactive oxygen species and pH, the cytoskeleton, and vesicular trafficking. In this review, we attempt to outline and summarize the factors that control root hair growth and how they work together as a team.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA