Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 122(12): 2917-2931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768367

RESUMO

Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Saponinas , Humanos , Animais , Camundongos , Micelas , Leucócitos Mononucleares/metabolismo , Proteínas Recombinantes , Leishmaniose Visceral/parasitologia , Adjuvantes Imunológicos , Citocinas/metabolismo , Vacinação , Camundongos Endogâmicos BALB C , Antígenos de Protozoários/genética
2.
Parasite Immunol ; 44(8): e12921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437797

RESUMO

Treatment against visceral leishmaniasis (VL) presents problems by the toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy of Leishmania LiHyC protein was evaluated in a murine model against Leishmania infantum infection. LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after the challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of interferon-gamma (IFN-γ), interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T-cell subtypes producing IFN-γ, tumor necrosis factor-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in the spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.


Assuntos
Leishmania infantum , Vacinas contra Leishmaniose , Leishmaniose Visceral , Saponinas , Animais , Antígenos de Protozoários , Interferon gama , Interleucina-12 , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Proteínas Recombinantes
3.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759035

RESUMO

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Assuntos
Vacinas contra Leishmaniose , Leishmaniose , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Imunoglobulina G , Interleucina-10/metabolismo , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C
4.
Exp Parasitol ; 233: 108205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968460

RESUMO

Visceral leishmaniasis (VL) is a neglected tropical disease found in tropical and subtropical regions in the world. The therapeutics used for the treatment against disease presents problems, mainly related to drug toxicity, route of administration, high cost and/or by emergence of resistant strains. In this context, the search for alternative antileishmanial candidates is desirable. Recently, a naphthoquinone derivative namely 2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone or Flau-A showed an effective in vitro biological action against Leishmania infantum. In the present study, the efficacy of this naphthoquinone derivative was evaluated in an in vivo infection model. BALB/c mice (n = 12 per group) were infected and later received saline or were treated with empty micelles (B/Mic), free Flau-A or it incorporated in Poloxamer 407-based micelles (Flau-A/Mic). The products were administered subcutaneously in the infected animals, which were then euthanized one (n = 6 per group) and 15 (n = 6 per group) days post-therapy, when immunological and parasitological evaluations were performed. Results showed that animals treated with Flau-A or Flau-A/Mic produced significantly higher levels of antileishmanial IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibody, when compared to data found in the control (saline and B/Mic) groups; which showed significantly higher levels of parasite-specific IL-4, IL-10 and IgG1 antibody. In addition, animals receiving free Flau-A or Flau-A/Mic presented also significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, when compared to the controls. A low hepatic and renal toxicity was also found. Overall, Flau-A/Mic showed better immunological and parasitological results, when compared to the use of free molecule. In conclusion, preliminary data suggest that this composition could be considered in future studies as promising therapeutic candidate against VL.


Assuntos
Antiprotozoários/química , Antiprotozoários/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Animais , Antiprotozoários/farmacologia , Feminino , Leishmania infantum/genética , Leishmania infantum/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Naftoquinonas/farmacologia , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia
5.
Parasitol Res ; 121(7): 2129-2140, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35614147

RESUMO

Leishmaniasis is a parasitic disease caused by Leishmania protozoa, which presents a large spectrum of clinical manifestations. In the present study, a quinoline derivative salt named N-(2-((7-chloroquinolin-4-yl)amino)ethyl)-N-(prop-2-yn-1-yl)prop-2-yn-1-aminium chloride or QDS3 was in vitro and in vivo tested against L. infantum by means of its incorporation in Poloxamer 407-based polymeric micelles (QDS3/M). The in vitro antileishmanial activity of QDS3 and QDS3/M was investigated in L. infantum promastigotes, axenic amastigotes and infected macrophages. BALB/c mice were infected with L. infantum, and parasitological parameters were evaluated 1 and 15 days post-treatment by determining the parasite load by a limiting dilution assay, besides a quantitative PCR (qPCR) method. Immunological response was assessed based on production of cellular cytokines, as well as by quantification of nitrite levels and specific antibodies. In vitro results showed that QDS3 free or in micelles presented effective antileishmanial action against both parasite stages, being more effective in amastigotes. In vivo data showed that treatment using QDS3 or QDS3/M reduced the parasite load in the livers, spleens, draining lymph nodes (dLN) and bone marrows of the treated animals, 1 and 15 days after treatment, when compared to values found in the control groups. Additionally, treated mice developed a polarized Th1-type immune response, with higher levels of IL-12, IFN-γ, GM-CSF and nitrite, besides high production of specific IgG2a antibodies, when compared to the controls. Parasitological and immunological data obtained using the micellar composition were better than the others. In conclusion, QDS3, mainly when applied in a delivery adjuvant system, could be considered for future studies as therapeutic candidate against VL.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Quinolinas , Animais , Antiprotozoários/uso terapêutico , Leishmaniose/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nitritos/uso terapêutico , Polímeros/uso terapêutico , Quinolinas/uso terapêutico
6.
Med Microbiol Immunol ; 210(2-3): 133-147, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33870453

RESUMO

Treatment against visceral leishmaniasis (VL) is mainly hampered by drug toxicity, long treatment regimens and/or high costs. Thus, the identification of novel and low-cost antileishmanial agents is urgent. Acarbose (ACA) is a specific inhibitor of glucosidase-like proteins, which has been used for treating diabetes. In the present study, we show that this molecule also presents in vitro and in vivo specific antileishmanial activity against Leishmania infantum. Results showed an in vitro direct action against L. infantum promastigotes and amastigotes, and low toxicity to mammalian cells. In addition, in vivo experiments performed using free ACA or incorporated in a Pluronic® F127-based polymeric micelle system called ACA/Mic proved effective for the treatment of L. infantum-infected BALB/c mice. Treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes when compared to the controls, as well as the development of antileishmanial Th1-type humoral and cellular responses based on high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibodies. In addition, ACA or ACA-treated animals suffered from low organ toxicity. Treatment with ACA/Mic outperformed treatments using either Miltefosine or free ACA based on parasitological and immunological evaluations performed one and 15 days post-therapy. In conclusion, data suggest that the ACA/Mic is a potential therapeutic agent against L. infantum and merits further consideration for VL treatment.


Assuntos
Acarbose/farmacologia , Acarbose/uso terapêutico , Imunidade , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Reposicionamento de Medicamentos , Feminino , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Carga Parasitária , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
7.
Appl Microbiol Biotechnol ; 105(18): 6805-6817, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432132

RESUMO

Leishmania braziliensis is responsible for most cases of human tegumentary leishmaniasis (HTL) and has caused a wide range of clinical manifestations, including cutaneous (CL) and mucosal leishmaniasis (ML). The diagnosis is based on criteria that consider epidemiological data, clinical findings, and laboratory tests and is hard to establish. For laboratory tests, none of the assays available can be considered gold standards for disease detection. In addition, the Montenegro skin test, essential to supporting infectologists in the clinical management of the disease, is no longer available in Brazil. Thus, the aim of this study was to develop new targets to be used in diagnostic tests for HTL. In the first step, we carried out two-dimensional gel electrophoresis, followed by mass spectrometry, combined with heat map analysis and immunoproteomics approach, and disclosed eight proteins expressed in the amastigote stage specifically recognized by serum from CL and ML patients. A chimeric protein was designed based on the combination of thirteen linear B-cell epitopes, identified by immunoinformatics analysis, from L. braziliensis proteins. Our results showed that the strategy used in this work was successful in developing an antigen to be used in immunological assays (100.0% sensitivity and specificity) in the detection of HTL cases and in comparison with results obtained from an ELISA using soluble L. braziliensis antigen (SLb-Antigen) and immunofluorescence assay (Bio-Manguinhos/FIOCRUZ). The present technology opens the door for its use in field exams by means of an immunochromatographic test, which will be even more helpful in regions without laboratory structures.Key points• Rational strategy to develop antigens.• Integration between immunoproteomic and immunoinformatics analysis.• Chimeric protein shows high performance in HTL diagnosis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmaniose Cutânea/diagnóstico , Proteômica , Proteínas Recombinantes de Fusão
8.
J Clin Microbiol ; 58(7)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32404479

RESUMO

Neosporosis has become a concern since it is associated with abortion in cattle. Currently, in situ diagnosis is determined through anamnesis, evaluation of the history, and perception of the clinical signs of the herd. There is no practical and noninvasive test adapted to a large number of samples, which represents a gap for the use of new approaches that provide information about infections and the risks of herds. Here, we performed a search in the Neospora caninum genome by linear B-cell epitopes using immunoinformatic tools aiming to develop a chimeric protein with high potential to bind specifically to antibodies from infected cattle samples. An enzyme-linked immunosorbent assay with the new chimeric antigen was developed and tested with sera from natural field N. caninum-infected bovines. The cross-reactivity of the new antigen was also evaluated using sera from bovines infected by other abortive pathogens, including Trypanosoma vivax, Leptospira sp., Mycobacterium bovis, and Brucella abortus, and enzootic bovine leucosis caused by bovine leukemia virus, as well as with samples of animals infected with Toxoplasma gondii The assay using the chimeric protein showed 96.6% ± 3.4% of sensitivity in comparison to healthy animal sera. Meanwhile, in relation to false-positive results provided by cross-reactivity with others pathogens, the specificity value was 97.0% ± 2.9%. In conclusion, immunoinformatic tools provide an efficient platform to build an accurate protein to diagnose bovine neosporosis based on serum samples.


Assuntos
Doenças dos Bovinos , Coccidiose , Neospora , Animais , Anticorpos Antiprotozoários , Bovinos , Doenças dos Bovinos/diagnóstico , Coccidiose/diagnóstico , Coccidiose/veterinária , Ensaio de Imunoadsorção Enzimática , Feminino , Neospora/genética , Gravidez , Proteínas Recombinantes de Fusão/genética , Testes Sorológicos
9.
Cytokine ; 129: 155031, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062145

RESUMO

The control measures against visceral leishmaniasis (VL) include a precise diagnosis of disease, the treatment of human cases, and reservoir and vector controls. However, these are insufficient to avoid the spread of the disease in specific countries worldwide. As a consequence, prophylactic vaccination could be interesting, although no effective candidate against human disease is available. In the present study, the Leishmania infantum amastin protein was evaluated regarding its immunogenicity and protective efficacy against experimental VL. BALB/c mice immunized with subcutaneous injections of the recombinant protein with or without liposome/saponin (Lip/Sap) as an adjuvant. After immunization, half of the animals per group were euthanized and immunological evaluations were performed, while the others were challenged with L. infantum promastigotes. Forty-five days after infection, the animals were euthanized and parasitological and immunological evaluations were performed. Results showed the development of a Th1-type immune response in rAmastin-Lip and rAmastin-Sap/vaccinated mice, before and after infection, which was based on the production of protein and parasite-specific IFN-γ, IL-12, GM-CSF, and nitrite, as well as the IgG2a isotype antibody. CD4+ T cells were mainly responsible for IFN-γ production in vaccinated mice, which also presented significant reductions in parasitism in their liver, spleen, draining lymph nodes, and bone marrow. In addition, PBMC cultures of treated VL patients and healthy subjects stimulated with rAmastin showed lymphoproliferation and higher IFN-γ production. In conclusion, the present study shows the first case of an L. infantum amastin protein associated with distinct delivery systems inducing protection against L. infantum infection and demonstrates an immunogenic effect of this protein in human cells.


Assuntos
Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Células Cultivadas , Feminino , Humanos , Imunidade/imunologia , Interferon gama/imunologia , Leishmaniose Visceral/parasitologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/parasitologia , Linfonodos/imunologia , Linfonodos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Células Th1/imunologia , Células Th1/parasitologia
10.
Parasite Immunol ; 42(12): e12784, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32772379

RESUMO

AIMS: Treatment for visceral leishmaniasis (VL) is hampered by the toxicity and/or high cost of drugs, as well as by emergence of parasite resistance. Therefore, there is an urgent need for new antileishmanial agents. METHODS AND RESULTS: In this study, the antileishmanial activity of a diprenylated flavonoid called 5,7,3,4'-tetrahydroxy-6,8-diprenylisoflavone (CMt) was tested against Leishmania infantum and L amazonensis species. Results showed that CMt presented selectivity index (SI) of 70.0 and 165.0 against L infantum and L amazonensis promastigotes, respectively, and of 181.9 and 397.8 against respective axenic amastigotes. Amphotericin B (AmpB) showed lower SI values of 9.1 and 11.1 against L infantum and L amazonensis promastigotes, respectively, and of 12.5 and 14.3 against amastigotes, respectively. CMt was effective in the treatment of infected macrophages and caused alterations in the parasite mitochondria. L infantum-infected mice treated with miltefosine, CMt alone or incorporated in polymeric micelles (CMt/Mic) presented significant reductions in the parasite load in distinct organs, when compared to the control groups. An antileishmanial Th1-type cellular and humoral immune response were developed one and 15 days after treatment, with CMt/Mic-treated mice presenting a better protective response. CONCLUSION: Our data suggest that CMt/Mic could be evaluated as a chemotherapeutic agent against VL.


Assuntos
Antiprotozoários/administração & dosagem , Leishmaniose Visceral/tratamento farmacológico , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Feminino , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/crescimento & desenvolvimento , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Carga Parasitária
11.
Parasitol Res ; 119(8): 2609-2622, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535734

RESUMO

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a prophylactic vaccination is urgently required. In the present study, a Leishmania protein called LiHyE, which was suggested recently as an antigenic marker for canine and human VL, was evaluated regarding its immunogenicity and protective efficacy in BALB/c mice against Leishmania infantum infection. In addition, the protein was used to stimulate peripheral blood mononuclear cells (PBMCs) from VL patients before and after treatment, as well as from healthy subjects. Vaccination results showed that the recombinant (rLiHyE) protein associated with liposome or saponin induced effective protection in the mice, since significant reductions in the parasite load in spleen, liver, draining lymph nodes, and bone marrow were found. The parasitological protection was associated with Th1-type cell response, since high IFN-γ, IL-12, and GM-CSF levels, in addition to low IL-4 and IL-10 production, were found. Liposome induced a better parasitological and immunological protection than did saponin. Experiments using PBMCs showed rLiHyE-stimulated lymphoproliferation in treated patients' and healthy subjects' cells, as well as high IFN-γ levels in the cell supernatant. In conclusion, rLiHyE could be considered for future studies as a vaccine candidate against VL.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Protozoários/administração & dosagem , Leishmania infantum/imunologia , Leishmaniose Visceral/prevenção & controle , Animais , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Células Th1/imunologia , Vacinação
12.
Parasitology ; 146(3): 322-332, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30198459

RESUMO

In the current study, phage-exposed mimotopes as targets against tegumentary leishmaniasis (TL) were selected by means of bio-panning cycles employing sera of TL patients and healthy subjects, besides the immune stimulation of peripheral blood mononuclear cells (PBMCs) collected from untreated and treated TL patients and healthy subjects. The clones were evaluated regarding their specific interferon-γ (IFN-γ) and interleukin-4 (IL-4) production in the in vitro cultures, and selectivity and specificity values were calculated, and those presenting the best results were selected for the in vivo experiments. Two clones, namely A4 and A8, were identified and used in immunization protocols from BALB/c mice to protect against Leishmania amazonensis infection. Results showed a polarized Th1 response generated after vaccination, being based on significantly higher levels of IFN-γ, IL-2, IL-12, tumour necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF); which were associated with lower production of specific IL-4, IL-10 and immunoglobulin G1 (IgG1) antibodies. Vaccinated mice presented significant reductions in the parasite load in the infected tissue and distinct organs, when compared with controls. In conclusion, we presented a strategy to identify new mimotopes able to induce Th1 response in PBMCs from TL patients and healthy subjects, and that were successfully used to protect against L. amazonensis infection.


Assuntos
Leishmania mexicana/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/imunologia , Leucócitos Mononucleares/imunologia , Adulto , Animais , Bacteriófagos/imunologia , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Linfócitos T/imunologia , Adulto Jovem
13.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013713

RESUMO

Two Leishmania infantum mimotopes (B10 and C01) identified by phage display showed to be antigenic and immunogenic for visceral (VL) and tegumentary (TL) leishmaniasis; however, their biological targets in the parasites have not been identified. The aim of the present study was to investigate the native antigens expressing both mimotopes, and to use them in distinct immunological assays. For this, a subtractive phage display technology was used, where a combinatorial library of single-chain variable fragments (scFv) was employed and the most reactive monoclonal antibodies for each target were captured, being the target antigens identified by mass spectrometry. Results in immunoblotting and immunoprecipitation assays showed that both monoclonal scFvs antibodies identified the ß-tubulin protein as the target antigen in L. infantum. To validate these findings, the recombinant protein was cloned, purified and tested for the serodiagnosis of human leishmaniasis, and its immunogenicity was evaluated in PBMC derived from healthy subjects and treated or untreated VL patients. Results showed high diagnostic efficacy, as well as the development of a specific Th1 immune response in the cell cultures, since higher IFN-γ and lower IL-10 production was found.


Assuntos
Leishmania infantum/genética , Leishmania infantum/metabolismo , Leishmaniose Visceral/parasitologia , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/imunologia , Técnicas de Visualização da Superfície Celular , Citocinas/metabolismo , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/imunologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/tratamento farmacológico , Modelos Moleculares , Conformação Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Nanomedicina Teranóstica , Tubulina (Proteína)/genética , Tubulina (Proteína)/imunologia
14.
Cell Immunol ; 334: 61-69, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287082

RESUMO

The present study evaluated the cytokine profile in PBMC supernatants and the humoral response in mucosal leishmaniasis (ML) patients and in healthy subjects living in an endemic area. Four proteins, which had previously proven to be antigenic in the human disease, were tested: LiHyM, enolase, eukaryotic initiation factor 5a, and Beta-tubulin. Results showed that all of the proteins stimulated human cells with higher IFN-γ and lower IL-4 and IL-10 levels. The analysis of antibody isotypes correlated with cell response, since the IgG2 production was higher than IgG1 in both groups. By contrast, a Th2 response was found when an antigenic Leishmania extract was used. Serological analyses revealed high sensitivity and specificity values for the serodiagnosis of the disease, when compared to the data obtained using the antigenic preparation. In conclusion, this study presents new candidates to be evaluated as biomarkers in tegumentary leishmaniasis.


Assuntos
Formação de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Leishmania/imunologia , Leishmaniose Cutânea/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Adulto , Fator de Iniciação 5 em Eucariotos/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Células Th2/imunologia , Tubulina (Proteína)/imunologia , Adulto Jovem
15.
Cell Immunol ; 331: 67-77, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29871740

RESUMO

Visceral leishmaniasis (VL) is a fatal disease when acute and untreated. The treatment against this disease is long and presents toxicity and/or high costs. Moreover, parasite resistance has been increasing. Therefore, alternative control measures to avoid the spread of disease should be considered. It is accepted that the development of the T helper (Th)1 immune response, based on the production of pro-inflammatory cytokines, is required for the control of parasites. Although recombinant protein-based vaccines have been tested against VL, they require supplementation with immune adjuvants. In addition, there is a scarcity of studies that comparatively evaluate the efficacy of the immunogens when administered by different delivery systems in mammalian hosts. In the present study, a Leishmania hypothetical protein, LiHyR, was cloned and evaluated by immunization as a plasmid deoxyribonucleic acid (DNA) vaccine or in a recombinant format plus saponin against Leishmania infantum infection. Results showed that both vaccination regimens induced a Th1 cell-based immunity, since high levels of interferon-gamma (IFN-γ), interleukin (IL)-2, IL-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α) were found, and were associated with the low production of IL-4, IL-10, and anti-parasite immunoglobulin (IgG)1 isotype. In addition, significant reductions in the parasite load were found in the evaluated organs of the DNA LiHyR or rLiHyR/saponin-vaccinated animals. No significant difference was achieved between groups vaccinated with DNA or the recombinant protein. The antigen proved to be also immunogenic in human peripheral blood mononuclear cells (PBMCs) collected from healthy subjects and from untreated and treated VL patients. A higher IgG2 isotype was also found in sera samples of these subjects, thus demonstrating its possible use as a human vaccine. This study demonstrates the protective efficacy of a new Leishmania protein against VL, when it is administered as a DNA vaccine or a recombinant protein plus saponin, and points out its use as a human vaccine against disease.


Assuntos
Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/fisiologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Proteínas Recombinantes/administração & dosagem , Homologia de Sequência de Aminoácidos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
16.
Cell Immunol ; 323: 59-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128045

RESUMO

Visceral leishmaniasis (VL) represents a serious public health problem, as Leishmania infantum is one of main disease causative agents in the Americas. In a previous immunoproteomic study, the prohibitin (PHB) protein was identified in L. infantum promastigote and amastigote extracts by antibodies in asymptomatic and symptomatic VL dog sera. This protein was found to be highly conserved between different Leishmania spp., but it presented a low identity with amino acid sequences of other organisms. The aim of the present study was to evaluate the cellular response induced by the recombinant PHB (rPHB) protein in BALB/c mice, as well as in PBMCs purified from untreated and treated VL patients, as well as to evaluate its protective efficacy against an infection by L. infantum promastigotes. Our data showed that there was a Th1 cellular response to rPHB, based on high levels of IFN-γ, IL-12, and GM-CSF in the immunized animals, as well as a proliferative response specific to the protein and higher IFN-γ levels induced in PBMCs from individuals who had recovered from the disease. The protection was represented by significant reductions in the parasite load in the animals' spleen, liver, bone marrow, and draining lymph nodes, as compared to results found in the control groups. In addition, an anti-rPHB serology, using a canine and human serological panel, showed a high performance of this protein when diagnosing VL based on high sensitivity and specificity values, as compared to results found for the rA2 antigen and the soluble Leishmania antigenic extract. Our data suggest that PHB has a potential application for the diagnosis of canine and human VL through antibody detection, as well as an application as a vaccine candidate to protect against disease.


Assuntos
Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/imunologia , Proteínas Repressoras/imunologia , Animais , Antígenos de Protozoários/imunologia , Cães , Humanos , Leishmania infantum/imunologia , Leishmania infantum/metabolismo , Leishmaniose Visceral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proibitinas , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Células Th1/imunologia , Vacinas/metabolismo
17.
Cytokine ; 111: 131-139, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142534

RESUMO

Leishmania proteins have been evaluated as vaccine candidates against leishmaniasis; however, most antigens present low immunogenicity and need to be added with immune adjuvants. A low number of licensed adjuvants exist on the market today; therefore, research conducted to produce new products is desirable. The present study sought to evaluate the immunogenicity and protective efficacy of a recombinant Leishmania hypothetical protein, namely LiHyR, administered with saponin or liposomes in BALB/c mice. Immunological and parasitological parameters were evaluated, and results showed significant protection against Leishmania infantum infection produced by both compositions in the immunized animals; however, this was not identified when the antigen was used alone. In addition, the liposomal formulation was more effective in inducing a polarized Th1 response in the vaccinated animals, which was maintained after challenge and reflected by lower parasitism found in all evaluated organs when the limiting dilution technique and RT-PCR assay were employed. The protected animals showed higher levels of protein and parasite-specific IFN-γ IL-2, IL-12, GM-CSF, and TNF-α, which were evaluated by capture ELISA and flow cytometry, in addition to a higher production of anti-protein and anti-parasite IgG2a antibodies, both before and after challenge. The Lip/rLiHyR combination induced higher IFN-γ production through both CD4+ and CD8+ T cell subtypes. Results indicate the possibility of using the LiHyR, containing a liposomal formulation, as a vaccine candidate against visceral leishmaniasis.


Assuntos
Citocinas/imunologia , Imunogenicidade da Vacina , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/farmacologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/patologia , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia
18.
Parasitology ; 145(6): 740-751, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113597

RESUMO

In this study, a Leishmania hypothetical protein, LiHyS, was evaluated regarding its antigenicity, immunogenicity and protective efficacy against visceral leishmaniasis (VL). Regarding antigenicity, immunoblottings and an enzyme-linked immunosorbent assay using human and canine sera showed high sensitivity and specificity values for the recombinant protein (rLiHyS) in the diagnosis of VL. When evaluating the immunogenicity of LiHyS, which is possibly located in the parasite's flagellar pocket, proliferative assays using peripheral blood mononuclear cells from healthy subjects or VL patients showed a high proliferative index in both individuals, when compared to the results obtained using rA2 or unstimulated cultures. Later, rLiHyS/saponin was inoculated in BALB/c mice, which were then challenged with Leishmania infantum promastigotes. The vaccine induced an interferon-γ, interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor production, which was maintained after infection and which was associated with high nitrite and IgG2a antibody levels, as well as low IL-4 and IL-10 production. Significant reductions in the parasite load in liver, spleen, bone marrow and draining lymph nodes were found in these animals. In this context, the present study shows that the rLiHyS has the capacity to be evaluated as a diagnostic marker or vaccine candidate against VL.


Assuntos
Antígenos de Protozoários/imunologia , Imunogenicidade da Vacina , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/genética , Citocinas/sangue , Cães , Feminino , Humanos , Imunoglobulina G/sangue , Interferon gama/sangue , Interleucina-12/sangue , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/genética , Leishmaniose Visceral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
19.
Appl Microbiol Biotechnol ; 102(14): 6069-6080, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736822

RESUMO

Serological tests are preferentially used for the diagnosis of Chagas' disease (CD) during the chronic phase because of the low parasitemia and high anti-Trypanosoma cruzi antibody titers. However, the current methods showed several disadvantages, as contradictory or inconclusive results, mainly related to the characteristics of the antigens used, in general, crude or whole parasites, but also due to antigen production protocol and the experimental conditions used in serological tests. Thus, better-quality serological assays are urgently needed. Here, we performed a wide immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted proteome based on genome sequence from T. cruzi strains to will be applied as synthetic peptides in the serodiagnosis of the chronic CD. Three B-cell epitopes derived from mucin-associated surface protein (MASP) family, expressed in both infective parasite stages, trypomastigote and amastigotes, conserved in T. cruzi strains, and highly divergent as compared with Leishmania spp. proteome, were selected for this study. The results demonstrated that synthetic peptide 2 and a mixture of peptides (Mix II: peptides 2 and 3) were able to identify all chronic CD cases, indeterminate or Chagas cardiomyopathy clinical presentation, and simultaneously able to discriminate infections caused by Leishmania parasites, with high accuracy (98.37 and 100.00%, respectively) and agreement (kappa index = 0.967 and 1.000, respectively) with direct methods as compared to current diagnostic pipeline performed by reference laboratories in Brazil. This study represents an interesting strategy for the discovery of new antigens applied to serologic diagnosis of infectious diseases and for the technological development of platforms for large-scale production of diagnostic tests.


Assuntos
Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Epitopos de Linfócito B/imunologia , Genômica , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Brasil , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Proteoma , Testes Sorológicos , Trypanosoma cruzi/genética
20.
Exp Parasitol ; 186: 24-35, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29448040

RESUMO

Amphotericin B (Amp) has been well-successfully used to treat against Leishmania infection, although high toxicity has been found in patients. In the present study, Amp was administered in Leishmania infantum-infected BALB/c mice by three distinct delivery systems aiming to compare their efficacy against challenge infection, as well as their side effects in a murine visceral leishmaniasis (VL) model. This product was administered in a Poloxamer P407 (Pluronic® F127)-based polymeric micelle system (Amp/M), in the Ambisome® formulation (Lip-Amp) or in a free format (free Amp). Glucantime® (Gluc) was used as a comparative drug. Aiming to evaluate different endpoints of the treatments, the efficacy of the compounds was investigated one and 15-days after the therapeutic regimens, determining the parasite load by a limiting dilution assay and a quantitative PCR (qPCR) technique, as well as evaluating the immune response generated in the infected and treated animals. In the results, Amp/M or Lip-Amp-treated mice presented the best outcomes, since significant parasite load reductions were found in the evaluated organs, as well as a parasite-specific Th1 immune response was observed in the animals. In addition, no hepatic or renal damage was found in these mice. On the other hand, free Amp or Gluc induced toxicity in the animals, which was associated with a low Th1 immune response. Comparatively, Amp/M was the most effective drug in our experimental model, and results showed that the Amp-carrying system could be considered as a future alternative in studies against VL.


Assuntos
Anfotericina B/administração & dosagem , Antiprotozoários/administração & dosagem , Sistemas de Liberação de Medicamentos/normas , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/toxicidade , Animais , Antiprotozoários/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Fígado/efeitos dos fármacos , Meglumina/administração & dosagem , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nitritos/metabolismo , Compostos Organometálicos/administração & dosagem , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA