Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(31): e202403424, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38545934

RESUMO

Rechargeable aluminum batteries (RABs) are a promising candidate for large-scale energy storage, attributing to the abundant reserves, low cost, intrinsic safety, and high theoretical capacity of Al. However, the cathode materials reported thus far still face challenges such as limited capacity, sluggish kinetics, and undesirable cycle life. Herein, we propose an organic cathode benzo[i] benzo[6,7] quinoxalino [2,3-a] benzo [6,7] quinoxalino [2,3-c] phenazine-5,8,13,16,21,24-hexaone (BQQPH) for RABs. The six C=O and six C=N redox active sites in each molecule enable BQQPH to deliver a record ultra-high capacity of 413 mAh g-1 at 0.2 A g-1. Encouragingly, the intermolecular hydrogen bonding network and π-π stacking interactions endow BQQPH with robust structural stability and minimal solubility, enabling an ultra-long lifetime of 100,000 cycles. Moreover, the electron-withdrawing carbonyl group induces a reduction in the energy level of the lowest unoccupied molecular orbital and expands the π-conjugated system, which considerably enhances both the discharge voltage and redox kinetics of BQQPH. In situ and ex situ characterizations combined with theoretical calculations unveil that the charge storage mechanism is reversible coordination/dissociation of AlCl2 + with the N and O sites in BQQPH accompanied by 12-electron transfer. This work provides valuable insights into the design of high-performance organic cathode materials for RABs.

2.
Chemistry ; 29(22): e202203546, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36734189

RESUMO

The incompatibility of poly(vinylidene difluoride) (PVDF) with acidic ionic liquid electrolytes and the use of toxic and high-cost N-methyl pyrrolidone (NMP) solvents hinder the wide application of aluminum-ion batteries (AIBs). In this work, sodium alginate (Na-Alg) is developed as an aqueous binder for the fabrication of graphite positive electrodes in AIBs. The compatibility of various binders with the ionic liquid electrolyte is evaluated, and interaction between various binders and graphite particles before and after cycling is compared and discussed. The results demonstrate that the well compatibility of Na-Alg in ionic liquids and its reasonable distribution on the graphite surface facilitate fast charge transfer and ion diffusion, reduce electrode polarization, and thus contributing to significantly improved cycling stability and rate capability of AIBs. This work provides a new insight into the development of low-cost, eco-friendly, and high-performance binders for AIBs.

3.
Angew Chem Int Ed Engl ; 62(9): e202216797, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36545849

RESUMO

Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g-1 at 0.2 A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.

4.
Angew Chem Int Ed Engl ; 62(28): e202304229, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37139572

RESUMO

Highly-active and low-cost bifunctional electrocatalysts for oxygen reduction and evolution are essential in rechargeable metal-air batteries, and single atom catalysts with Fe-N-C are promising candidates. However, the activity still needs to be boosted, and the origination of spin-related oxygen catalytic performance is still uncertain. Herein, an effective strategy to regulate local spin state of Fe-N-C through manipulating crystal field and magnetic field is proposed. The spin state of atomic Fe can be regulated from low spin to intermediate spin and to high spin. The cavitation of dxz and dyz orbitals of high spin FeIII can optimize the O2 adsorption and promote the rate-determining step (*O2 to *OOH). Benefiting from these merits, the high spin Fe-N-C electrocatalyst displays the highest oxygen electrocatalytic activities. Furthermore, the high spin Fe-N-C-based rechargeable zinc-air battery displays a high power density of 170 mW cm-2 and good stability.

5.
Nanomicro Lett ; 15(1): 188, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515609

RESUMO

Aluminum-ion batteries (AIBs) have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve, light weight, low cost, and good safety of Al. However, the development of AIBs faces challenges due to the usage of AlCl3-based ionic liquid electrolytes, which are expensive, corrosive, and sensitive to humidity. Here, we develop a low-cost, non-corrosive, and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea (MU) ligand. Through optimizing the molar ratio to achieve the unique solvation structure, the formed Al(ClO4)3·9H2O/MU hydrated deep eutectic electrolyte (AMHEE) with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al. When combining with vanadium oxide nanorods positive electrode, the Al-ion full battery delivers a high discharge capacity of 320 mAh g-1 with good capacity retention. The unique solvation structure with a low desolvation energy of the AMHEE enables Al3+ insertion/extraction during charge/discharge processes, which is evidenced by in situ synchrotron radiation X-ray diffraction. This work opens a new pathway of developing low-cost, safe, environmentally friendly and high-performance electrolytes for practical and sustainable AIBs.

6.
Adv Mater ; 34(8): e2106511, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873764

RESUMO

Rechargeable aluminum-ion batteries (AIBs) are promising for large-scale energy storage due to the abundant reserves, low cost, and high capacity of the Al anode. However, the development of AIBs is currently hindered by the usage of AlCl3 /1-ethyl-3-methylimidazolium chloride electrolyte, which is expensive, highly corrosive, and extremely air-sensitive. Herein, a new hydrated eutectic electrolyte (HEE) composed of hydrated aluminum perchlorate and succinonitrile for low-cost, noncorrosive, and air-stable AIBs is reported. Crystal water in the hydrated aluminum perchlorate plays a vital role in forming the HEE, in which one H2 O and five succinonitrile molecules coordinate with one Al3+ ion. The optimized ratio of Al(ClO4 )3 ·9H2 O to succinonitrile is 1:12. When combining with the self-doped polyaniline cathode, the associated AIB delivers a high discharge capacity of 185 mAh g-1 over 300 cycles; and the charge/discharge mechanism in the HEE is studied experimentally and theoretically. The HEE is nonflammable, air-stable, and noncorrosive, thus enabling good air tolerance and facile fabrication of AIBs.

7.
Nanomicro Lett ; 14(1): 169, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987834

RESUMO

Rechargeable aluminum-sulfur (Al-S) batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity, good safety, abundant natural reserves, and low cost of Al and S. However, the research progress of Al-S batteries is limited by the slow kinetics and shuttle effect of soluble polysulfides intermediates. Herein, an interconnected free-standing interlayer of iron single atoms supported on porous nitrogen-doped carbon nanofibers (FeSAs-NCF) on the separator is developed and used as both catalyst and chemical barrier for Al-S batteries. The atomically dispersed iron active sites (Fe-N4) are clearly identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption near-edge structure. The Al-S battery with the FeSAs-NCF shows an improved specific capacity of 780 mAh g-1 and enhanced cycle stability. As evidenced by experimental and theoretical results, the atomically dispersed iron active centers on the separator can chemically adsorb the polysulfides and accelerate reaction kinetics to inhibit the shuttle effect and promote the reversible conversion between aluminum polysulfides, thus improving the electrochemical performance of the Al-S battery. This work provides a new way that can not only promote the conversion of aluminum sulfides but also suppress the shuttle effect in Al-S batteries.

8.
Adv Mater ; 34(2): e2102026, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668245

RESUMO

The ever-growing market of electric vehicles and the upcoming grid-scale storage systems have stimulated the fast growth of renewable energy storage technologies. Aluminum-based batteries are considered one of the most promising alternatives to complement or possibly replace the current lithium-ion batteries owing to their high specific capacity, good safety, low cost, light weight, and abundant reserves of Al. However, the anode problems in primary and secondary Al batteries, such as, self-corrosion, passive film, and volume expansion, severely limit the batteries' practical performance, thus hindering their commercialization. Herein, an overview of the currently emerged Al-based batteries is provided, that primarily focus on the recent research progress for Al anodes in both primary and rechargeable systems. The anode reaction mechanisms and problems in various Al-based batteries are discussed, and various strategies to overcome the challenges of Al anodes, including surface oxidation, self-corrosion, volume expansion, and dendrite growth, are systematically summarized. Finally, future research perspectives toward advanced Al batteries with higher performance and better safety are presented.

9.
ACS Appl Mater Interfaces ; 13(31): 37123-37132, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333971

RESUMO

The oxygen reduction reaction (ORR) with sluggish kinetics on the cathode of aluminum-air (Al-air) batteries greatly limits their further development. Here, a new strategy is proposed to synthesize oxygen and nitrogen codoped carbon nanofibers loaded with manganese oxides (MnO/Mn2O3/ONCNF-n) as an efficient electrocatalyst for ORR by using oxygen plasma surface etching. The MnO/Mn2O3/ONCNF-3 exhibit superior ORR performance in an alkaline electrolyte, which is attributed to various active sites including N and O heteroatoms, vacancies, and manganese oxides. Additionally, the fabricated homemade Al-air battery (AAB) with MnO/Mn2O3/ONCNF-3 exhibits a maximum power density of 129.7 mW cm-2, demonstrating comparable performance to AABs based on the commercial Pt/C catalyst. This work provides a new approach of using O2 plasma for enhancing the ORR catalytic activities of carbon materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA