Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(15): 5731-5745, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440390

RESUMO

Obesity is associated with metabolic dysfunction, including insulin resistance and hyperinsulinemia, and with disorders such as cardiovascular disease, osteoporosis, and neurodegeneration. Typically, these pathologies are examined in discrete model systems and with limited temporal resolution, and whether these disorders co-occur is therefore unclear. To address this question, here we examined multiple physiological systems in male C57BL/6J mice following prolonged exposure to a high-fat/high-sucrose diet (HFHSD). HFHSD-fed mice rapidly exhibited metabolic alterations, including obesity, hyperleptinemia, physical inactivity, glucose intolerance, peripheral insulin resistance, fasting hyperglycemia, ectopic lipid deposition, and bone deterioration. Prolonged exposure to HFHSD resulted in morbid obesity, ectopic triglyceride deposition in liver and muscle, extensive bone loss, sarcopenia, hyperinsulinemia, and impaired short-term memory. Although many of these defects are typically associated with aging, HFHSD did not alter telomere length in white blood cells, indicating that this diet did not generally promote all aspects of aging. Strikingly, glucose homeostasis was highly dynamic. Glucose intolerance was evident in HFHSD-fed mice after 1 week and was maintained for 24 weeks. Beyond 24 weeks, however, glucose tolerance improved in HFHSD-fed mice, and by 60 weeks, it was indistinguishable from that of chow-fed mice. This improvement coincided with adaptive ß-cell hyperplasia and hyperinsulinemia, without changes in insulin sensitivity in muscle or adipose tissue. Assessment of insulin secretion in isolated islets revealed that leptin, which inhibited insulin secretion in the chow-fed mice, potentiated glucose-stimulated insulin secretion in the HFHSD-fed mice after 60 weeks. Overall, the excessive calorie intake was accompanied by deteriorating function of numerous physiological systems.


Assuntos
Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Doenças Metabólicas , Sacarose/efeitos adversos , Homeostase do Telômero/efeitos dos fármacos , Animais , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Masculino , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Sacarose/farmacologia , Fatores de Tempo
2.
J Biol Chem ; 292(47): 19135-19145, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28982973

RESUMO

Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity.


Assuntos
Biologia Computacional/métodos , Dieta , Resistência à Insulina/fisiologia , Metaboloma , Metabolômica/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos
3.
J Biol Chem ; 290(39): 23528-42, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240143

RESUMO

Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.


Assuntos
Adipócitos/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Insulina/fisiologia , Proteômica , Proteínas Supressoras de Tumor/fisiologia , Células 3T3-L1 , Animais , Masculino , Camundongos , Ratos , Ratos Wistar , Proteínas Supressoras de Tumor/genética
4.
J Biol Chem ; 290(18): 11337-48, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25720492

RESUMO

Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.


Assuntos
Adipócitos/metabolismo , Resistência à Insulina , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/metabolismo , Animais , Transporte Biológico , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
5.
Diabetologia ; 57(10): 2173-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25005332

RESUMO

AIMS/HYPOTHESIS: Glucose-stimulated insulin secretion (GSIS) and insulin-stimulated glucose uptake are processes that rely on regulated intracellular vesicle transport and vesicle fusion with the plasma membrane. DOC2A and DOC2B are calcium-sensitive proteins that were identified as key components of vesicle exocytosis in neurons. Our aim was to investigate the role of DOC2 isoforms in glucose homeostasis, insulin secretion and insulin action. METHODS: DOC2 expression was measured by RT-PCR and western blotting. Body weight, glucose tolerance, insulin action and GSIS were assessed in wild-type (WT), Doc2a (-/-) (Doc2aKO), Doc2b (-/-) (Doc2bKO) and Doc2a (-/-)/Doc2b (-/-) (Doc2a/Doc2bKO) mice in vivo. In vitro GSIS and glucose uptake were assessed in isolated tissues, and exocytotic proteins measured by western blotting. GLUT4 translocation was assessed by epifluorescence microscopy. RESULTS: Doc2b mRNA was detected in all tissues tested, whereas Doc2a was only detected in islets and the brain. Doc2aKO and Doc2bKO mice had minor glucose intolerance, while Doc2a/Doc2bKO mice showed pronounced glucose intolerance. GSIS was markedly impaired in Doc2a/Doc2bKO mice in vivo, and in isolated Doc2a/Doc2bKO islets in vitro. In contrast, Doc2bKO mice had only subtle defects in insulin secretion in vivo. Insulin action was impaired to a similar degree in both Doc2bKO and Doc2a/Doc2bKO mice. In vitro insulin-stimulated glucose transport and GLUT4 vesicle fusion were defective in adipocytes derived from Doc2bKO mice. Surprisingly, insulin action was not altered in muscle isolated from DOC2-null mice. CONCLUSIONS/INTERPRETATION: Our study identifies a critical role for DOC2B in insulin-stimulated glucose uptake in adipocytes, and for the synergistic regulation of GSIS by DOC2A and DOC2B in beta cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adipócitos/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Ligação ao Cálcio/genética , Secreção de Insulina , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
6.
J Biol Chem ; 287(9): 6128-38, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22207758

RESUMO

Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5-22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease.


Assuntos
Adipócitos/enzimologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Simulação por Computador , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Dinâmica não Linear , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
J Biol Chem ; 287(49): 40996-1006, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23055524

RESUMO

The APPL1 and APPL2 proteins (APPL (adaptor protein, phosphotyrosine interaction, pleckstrin homology (PH) domain, and leucine zipper-containing protein)) are localized to their own endosomal subcompartment and interact with a wide range of proteins and small molecules at the cell surface and in the nucleus. They play important roles in signal transduction through their ability to act as Rab effectors. (Rabs are a family of Ras GTPases involved in membrane trafficking.) Both APPL1 and APPL2 comprise an N-terminal membrane-curving BAR (Bin-amphiphysin-Rvs) domain linked to a PH domain and a C-terminal phosphotyrosine-binding domain. The structure and interactions of APPL1 are well characterized, but little is known about APPL2. Here, we report the crystal structure and low resolution solution structure of the BARPH domains of APPL2. We identify a previously undetected hinge site for rotation between the two domains and speculate that this motion may regulate APPL2 functions. We also identified Rab binding partners of APPL2 and show that these differ from those of APPL1, suggesting that APPL-Rab interaction partners have co-evolved over time. Isothermal titration calorimetry data reveal the interaction between APPL2 and Rab31 has a K(d) of 140 nM. Together with other biophysical data, we conclude the stoichiometry of the complex is 2:2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Membrana Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria/métodos , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X/métodos , Dimerização , GTP Fosfo-Hidrolases/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Fosfatidilinositóis/química , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Solventes/química , Eletricidade Estática , Propriedades de Superfície , Raios X , Proteínas rab de Ligação ao GTP/metabolismo
8.
Elife ; 72018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29402381

RESUMO

Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance.


Assuntos
Tecido Adiposo/patologia , Ataxia , Resistência à Insulina , Mitocôndrias/patologia , Doenças Mitocondriais/fisiopatologia , Debilidade Muscular , Músculos/patologia , Oxidantes/metabolismo , Ubiquinona/deficiência , Adipócitos/fisiologia , Animais , Humanos , Camundongos , Sensibilidade e Especificidade
9.
Diabetes ; 64(6): 1914-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25576050

RESUMO

Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1(-/-) mice and analyzing body weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise endurance together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers.


Assuntos
Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Eletroforese em Gel de Poliacrilamida , Eletroporação , Proteínas Ativadoras de GTPase , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Condicionamento Físico Animal , Reação em Cadeia da Polimerase em Tempo Real
10.
NPJ Syst Biol Appl ; 1: 15010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28725461

RESUMO

OBJECTIVE: Insulin resistance (IR) is one of the earliest predictors of type 2 diabetes. However, diagnosis of IR is limited. High fat fed mouse models provide key insights into IR. We hypothesized that early features of IR are associated with persistent changes in gene expression (GE) and endeavored to (a) develop novel methods for improving signal:noise in analysis of human GE using mouse models; (b) identify a GE motif that accurately diagnoses IR in humans; and (c) identify novel biology associated with IR in humans. METHODS: We integrated human muscle GE data with longitudinal mouse GE data and developed an unbiased three-level cross-species analysis platform (single gene, gene set, and networks) to generate a gene expression motif (GEM) indicative of IR. A logistic regression classification model validated GEM in three independent human data sets (n=115). RESULTS: This GEM of 93 genes substantially improved diagnosis of IR compared with routine clinical measures across multiple independent data sets. Individuals misclassified by GEM possessed other metabolic features raising the possibility that they represent a separate metabolic subclass. The GEM was enriched in pathways previously implicated in insulin action and revealed novel associations between ß-catenin and Jak1 and IR. Functional analyses using small molecule inhibitors showed an important role for these proteins in insulin action. CONCLUSIONS: This study shows that systems approaches for identifying molecular signatures provides a powerful way to stratify individuals into discrete metabolic groups. Moreover, we speculate that the ß-catenin pathway may represent a novel biomarker for IR in humans that warrant future investigation.

11.
Diabetes ; 63(8): 2656-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24696450

RESUMO

The vascular endothelial growth factor (VEGF) family of cytokines are important regulators of angiogenesis that have emerged as important targets for the treatment of obesity. While serum VEGF levels rise during obesity, recent studies using genetic models provide conflicting evidence as to whether VEGF prevents or accelerates metabolic dysfunction during obesity. In the current study, we sought to identify the effects of VEGF-A neutralization on parameters of glucose metabolism and insulin action in a dietary mouse model of obesity. Within only 72 h of administration of the VEGF-A-neutralizing monoclonal antibody B.20-4.1, we observed almost complete reversal of high-fat diet-induced insulin resistance principally due to improved insulin sensitivity in the liver and in adipose tissue. These effects were independent of changes in whole-body adiposity or insulin signaling. These findings show an important and unexpected role for VEGF in liver insulin resistance, opening up a potentially novel therapeutic avenue for obesity-related metabolic disease.


Assuntos
Gorduras na Dieta/efeitos adversos , Glucose/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adiposidade/fisiologia , Ração Animal/análise , Animais , Anticorpos/farmacologia , Gorduras na Dieta/administração & dosagem , Homeostase/fisiologia , Imunoglobulina G/farmacologia , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Obesidade , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA