Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108544

RESUMO

EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein-protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as "DTX3c"), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Adenosina Trifosfatases/metabolismo , Fator de Crescimento Insulin-Like II , Mesotelioma/genética , Isoformas de Proteínas , Receptor de Insulina/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216100

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease worldwide, with 25% of these patients developing nonalcoholic steatohepatitis (NASH). NASH significantly increases the risk of cirrhosis and decompensated liver failure. Past studies in rodent models have shown that glycine-N-methyltransferase (GNMT) knockout results in rapid steatosis, fibrosis, and hepatocellular carcinoma progression. However, the attenuation of GNMT in subjects with NASH and the molecular basis for its impact on the disease process is still unclear. To address this knowledge gap, we show the reduction of GNMT protein levels in the liver of NASH subjects compared to healthy controls. To gain insight into the impact of decreased GNMT in the disease process, we performed global label-free proteome studies on the livers from a murine modified amylin diet-based model of NASH. Histological and molecular characterization of the animal model demonstrate a high resemblance to human disease. We found that a reduction of GNMT leads to a significant increase in S-adenosylmethionine (AdoMet), an essential metabolite for transmethylation reactions and a substrate for polyamine synthesis. Further targeted proteomic and metabolomic studies demonstrated a decrease in GNMT transmethylation, increased flux through the polyamine pathway, and increased oxidative stress production contributing to NASH pathogenesis.


Assuntos
Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/fisiologia , Poliaminas/metabolismo , S-Adenosilmetionina/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Feminino , Glicina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Oxirredução , Proteômica/métodos
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955534

RESUMO

A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activation of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by concerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1ß/IFN-γ for 4 or 24 h to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic analysis performed on the ECs provide a molecular framework for the EC response to inflammatory stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest why some organs are more susceptible to inflammation early on, and show that, as inflammation progresses, some protein expression patterns become more uniform while additional organ-specific proteins are expressed. These findings provide an in-depth understanding of the molecular changes involved in the EC response to inflammation and can support the development of drugs targeting ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).


Assuntos
Células Endoteliais , Doenças Vasculares , Animais , Citocinas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Proteômica , Fator de Necrose Tumoral alfa/metabolismo , Doenças Vasculares/metabolismo
5.
Mol Psychiatry ; 24(11): 1696-1706, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728702

RESUMO

A high circulating level of homocysteine (Hcy), also known as hyperhomocysteinemia, is a risk factor for Alzheimer's disease (AD). Previous studies show that elevated Hcy promotes brain amyloidosis and behavioral deficits in mouse models of AD. However, whether it directly modulates the development of tau neuropathology independently of amyloid beta in vivo is unknown. Herein, we investigate the effect of diet-induced elevated levels of brain Hcy on the phenotype of a relevant mouse model of human tauopathy. Compared with controls, tau mice fed with low folate and B vitamins diet had a significant increase in brain Hcy levels and worsening of behavioral deficits. The same mice had a significant elevation of tau phosphorylation, synaptic pathology, and astrocytes activation. In vitro studies demonstrated that Hcy effect on tau phosphorylation was mediated by an upregulation of 5-lipoxygenase via cdk5 kinase pathway activation. Our findings support the novel concept that high Hcy level in the central nervous system is a metabolic risk factor for neurodegenerative diseases, specifically characterized by the progressive accumulation of tau pathology, namely tauopathies.


Assuntos
Homocisteína/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Araquidonato 5-Lipoxigenase/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Homocisteína/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Fosforilação , Sinapses/metabolismo , Tauopatias/fisiopatologia
6.
Hum Mol Genet ; 26(10): 1855-1862, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334897

RESUMO

Elevated level of homocysteine (Hcy) is considered a risk factor for neurodegenerative diseases, but the mechanisms remain to be established. Because high Hcy is associated with an up-regulation of the ALOX5 gene product, the 5Lipoxygenase (5LO), herein we investigated whether this activation is responsible for the Hcy effect on neurodegeneration or is a secondary event. To reach this goal, wild type mice and mice genetically deficient for 5LO were assessed after being exposed to a diet known to significantly increase brain levels of Hcy. Confirming compliance with the dietary regimen, we found that by the end of the study brain levels of Hcy were significantly increase in both groups. However, diet-induced high Hcy resulted in a significant increase in Aß, tau phosphorylation, neuroinflammation, synaptic pathology and memory impairment in control mice, but not in mice lacking ALOX5.Taken together our findings demonstrate that the up-regulation of the ALOX5 gene pathway is responsible for the development of the biochemical and behavioral sequelae of high Hcy brain levels in the context of a neurodegenerative phenotype. They provide critical support that this gene and its expressed protein are viable therapeutic targets to prevent the onset, or delay neurodegenerative events in subjects exposed to this risk factor.


Assuntos
Araquidonato 5-Lipoxigenase/deficiência , Araquidonato 5-Lipoxigenase/genética , Homocisteína/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Homocisteína/genética , Humanos , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/enzimologia , Fosforilação , Sinapses/metabolismo
7.
J Biol Chem ; 292(34): 14108-14121, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28684421

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of the antioxidant response, and its function is tightly regulated at the transcriptional, translational, and post-translational levels. It is well-known that Nrf2 is regulated at the protein level by proteasomal degradation via Kelch-like ECH-associated protein 1 (Keap1), but how Nrf2 is regulated at the translational level is less clear. Here, we show that pharmacological stimulation increases Nrf2 levels by overcoming basal translational repression. We developed a novel reporter assay that enabled identification of natural compounds that induce Nrf2 translation by a mechanism independent of Keap1-mediated degradation. Apigenin, resveratrol, and piceatannol all induced Nrf2 translation. More importantly, the pharmacologically induced Nrf2 overcomes Keap1 regulation, translocates to the nucleus, and activates the antioxidant response. We conclude that translational regulation controls physiological levels of Nrf2, and this can be modulated by apigenin, resveratrol, and piceatannol. Also, targeting this mechanism with novel compounds could provide new insights into prevention and treatment of multiple diseases in which oxidative stress plays a significant role.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/farmacologia , Núcleo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apigenina/farmacologia , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Genes Reporter/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Luciferases/genética , Luciferases/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Resveratrol , Bibliotecas de Moléculas Pequenas , Estilbenos/farmacologia
8.
Respir Res ; 18(1): 78, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464871

RESUMO

BACKGROUND: Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). METHODS: GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). RESULTS: GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. CONCLUSION: The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke-induced lung injury.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Lesão Pulmonar/metabolismo , Fumar/metabolismo , Biomarcadores/análise , Biomarcadores/química , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Biol Chem ; 289(11): 7615-29, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24492610

RESUMO

Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Assuntos
Mitocôndrias/metabolismo , Traumatismo por Reperfusão/patologia , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Transporte de Elétrons , Eletrofisiologia , Células HEK293 , Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Células Musculares/citologia , Isquemia Miocárdica/patologia , Oxigênio/química , Consumo de Oxigênio , Proteômica , Espécies Reativas de Oxigênio/metabolismo
10.
J Biol Chem ; 289(52): 36284-302, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25391657

RESUMO

The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/metabolismo , Canais de Cátion TRPM/fisiologia , Glândulas Suprarrenais/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Potencial da Membrana Mitocondrial , Potenciais da Membrana , Camundongos Nus , Transplante de Neoplasias , Neuroblastoma/patologia , Isoformas de Proteínas/fisiologia , Transporte Proteico , Carga Tumoral
11.
Ann Neurol ; 75(6): 851-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24644038

RESUMO

OBJECTIVE: High level of homocysteine (Hcy) is a recognized risk factor for developing Alzheimer disease (AD). However, the mechanisms involved are unknown. Previously, it was shown that high Hcy increases brain ß-amyloid (Aß) levels in amyloid precursor protein transgenic mice, but no data are available on the effect that it may have on the other main pathologic features of AD such as tau. METHODS: 3xTg mice with diet-induced high Hcy were compared with mice having normal Hcy. Neuronal cells were incubated with and without Hcy. RESULTS: Diet-induced high Hcy resulted in an exacerbation of the entire AD-like phenotype of the 3xTg mice. In particular, we found that compared with controls, mice with high Hcy developed significant memory and learning deficits, and had elevated Aß levels and deposition, which was mediated by an activation of the γ-secretase pathway. In addition, the same mice had a significant increase in the insoluble fraction of tau and its phosphorylation at specific epitopes, which was mediated by the cdk5 pathway. In vitro studies confirmed these observations and provided evidence that the effects of Hcy on Aß and tau are independent from each other. INTERPRETATION: Taken together, our findings demonstrate that a dietary condition that leads to an elevation of Hcy levels results in an exacerbation of all 3 major pathological features of the AD phenotype: memory deficits, and Aß and tau neuropathology. They support the concept that this dietary lifestyle can act as a risk factor and actively contribute to the development of the disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/etiologia , Homocisteína/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dieta/efeitos adversos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/complicações , Presenilina-1/genética , Transdução de Sinais/fisiologia , Proteínas tau/genética
12.
J Biol Chem ; 288(42): 30356-30364, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23986438

RESUMO

Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N(1)-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N(1)-acetylspermine and N(1)-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N(1)-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase.


Assuntos
Adenocarcinoma/metabolismo , Apoptose , Criptosporidiose/metabolismo , Cryptosporidium parvum/metabolismo , Estresse do Retículo Endoplasmático , Neoplasias Intestinais/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular Tumoral , Criptosporidiose/genética , Cryptosporidium parvum/genética , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Intestinais/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo
13.
J Biol Chem ; 288(1): 747-58, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23139419

RESUMO

STAT2 is a positive modulator of the transcriptional response to type I interferons (IFNs). STAT2 acquires transcriptional function by becoming tyrosine phosphorylated and imported to the nucleus following type I IFN receptor activation. Although most STAT proteins become dually phosphorylated on specific tyrosine and serine residues to acquire full transcriptional activity, no serine phosphorylation site in STAT2 has been reported. To find novel phosphorylation sites, mass spectrometry of immunoprecipitated STAT2 was used to identify several phosphorylated residues. Of these, substitution of serine 287 with alanine (S287A) generated a gain-of-function mutant that enhanced the biological effects of IFN-α. S287A-STAT2 increased cell growth inhibition, prolonged protection against vesicular stomatitis virus infection and enhanced transcriptional responses following exposure of cells to IFN-α. In contrast, a phosphomimetic STAT2 mutant (S287D) produced a loss-of-function protein that weakly activated IFN-induced ISGs. Our mechanistic studies suggest that S287A-STAT2 likely mediates its gain-of-function effects by prolonging STAT2/STAT1 dimer activation and retaining it in transcriptionally active complexes with chromatin. Altogether, we have uncovered that in response to type I IFN, STAT2 is serine phosphorylated in the coiled-coil domain that when phosphorylated can negatively regulate the biological activities of type I IFNs.


Assuntos
Interferon Tipo I/química , Fator de Transcrição STAT2/metabolismo , Serina/química , Alanina/química , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/química , DNA Complementar/metabolismo , Dimerização , Células HEK293 , Humanos , Interferon-alfa/metabolismo , Dados de Sequência Molecular , Mutagênese , Fosforilação , Plasmídeos/metabolismo , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
14.
Amino Acids ; 46(3): 701-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23881108

RESUMO

The continued rise in obesity despite public education, awareness and policies indicates the need for mechanism-based therapeutic approaches to help control the disease. Our data, in conjunction with other studies, suggest an unexpected role for the polyamine catabolic enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in fat homeostasis. Our previous studies showed that deletion of SSAT greatly exaggerates weight gain and that the transgenic overexpression suppresses weight gain in mice on a high-fat diet. This discovery is substantial but the underlying molecular linkages are only vaguely understood. Here, we used a comprehensive systems biology approach, on white adipose tissue (WAT), to discover that the partition of acetyl-CoA towards polyamine catabolism alters glucose homeostasis and hence, fat accumulation. Comparative proteomics and antibody-based expression studies of WAT in SSAT knockout, wild type and transgenic mice identified nine proteins with an increasing gradient across the genotypes, all of which correlate with acetyl-CoA consumption in polyamine acetylation. Adipose-specific SSAT knockout mice and global SSAT knockout mice on a high-fat diet exhibited similar growth curves and proteomic patterns in their WAT, confirming that attenuated consumption of acetyl-CoA in acetylation of polyamines in adipose tissue drives the obese phenotype of these mice. Analysis of protein expression indicated that the identified changes in the levels of proteins regulating acetyl-CoA consumption occur via the AMP-activated protein kinase pathway. Together, our data suggest that differential expression of SSAT markedly alters acetyl-CoA levels, which in turn trigger a global shift in glucose metabolism in adipose tissue, thus affecting the accumulation of body fat.


Assuntos
Tecido Adiposo/metabolismo , Glucose/metabolismo , Homeostase , Poliaminas/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos
15.
Am J Respir Crit Care Med ; 188(6): 673-83, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23924319

RESUMO

RATIONALE: Shifts in the gene expression of nuclear protein in chronic obstructive pulmonary disease (COPD), a progressive disease that is characterized by extensive lung inflammation and apoptosis, are common; however, the extent of the elevation of the core histones, which are the major components of nuclear proteins and their consequences in COPD, has not been characterized, which is important because extracellular histones are cytotoxic to endothelial and airway epithelial cells. OBJECTIVES: To investigate the role of extracellular histones in COPD disease progression. METHODS: We analyzed the nuclear lung proteomes of ex-smokers with and without the disease. Further studies on the consequences of H3.3 were also performed. MEASUREMENTS AND MAIN RESULTS: A striking finding was a COPD-specific eightfold increase of hyperacetylated histone H3.3. The hyperacetylation renders H3.3 resistant to proteasomal degradation despite ubiquitination; when combined with the reduction in proteasome activity that is known for COPD, this resistance helps account for the increased levels of H3.3. Using anti-H3 antibodies, we found H3.3 in the airway lumen, alveolar fluid, and plasma of COPD samples. H3.3 was cytotoxic to lung structural cells via a mechanism that involves the perturbation of Ca(2+) homeostasis and mitochondrial toxicity. We used the primary human airway epithelial cells and found that the antibodies to either the C or N terminus of H3 could partially reverse H3.3 toxicity. CONCLUSIONS: Our data indicate that there is an uncontrolled positive feedback loop in which the damaged cells release acetylated H3.3, which causes more damage, adds H3.3 release, and contributes toward the disease progression.


Assuntos
Apoptose , Progressão da Doença , Histonas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Acetilação , Humanos , Técnicas In Vitro , Pulmão/metabolismo , Pulmão/fisiopatologia
16.
COPD ; 11(2): 177-89, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24111704

RESUMO

The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e., ng/mL concentration, which could serve as potential biomarkers. Differentially expressed proteins were identified in a discovery group with severe COPD (FEV1 <45% predicted; n = 10). Subjects with normal lung function matched for age, sex, ethnicity and smoking history served as controls (n = 10). Pooled plasma from each group was exhaustively immunodepleted of abundant proteins, d separated by 1-D gel electrophoresis and extensively fractionated prior to LC-tandem mass spectroscopy (GeLC-MS). Thirty one differentially expressed proteins were identified in the discovery group including markers of lung defense against oxidant stress, alveolar macrophage activation, and lung tissue injury and repair. Four of the 31 proteins (i.e., GRP78, soluble CD163, IL1AP and MSPT9) were measured in a separate verification group of 80 subjects with varying COPD severity by immunoassay. All 4 were significantly altered in COPD and 2 (GRP78 and soluble CD163) correlated with both FEV1 and the extent of emphysema. In-depth, plasma proteomic analysis identified a group of novel, differentially expressed, low abundance proteins that reflect known pathogenic mechanisms and the severity of lung remodeling in COPD. These proteins may also prove useful as COPD biomarkers.


Assuntos
Remodelação das Vias Aéreas , Proteínas Sanguíneas/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Chaperona BiP do Retículo Endoplasmático , Volume Expiratório Forçado , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Sensibilidade e Especificidade , Índice de Gravidade de Doença , População Branca
17.
Front Immunol ; 15: 1341752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524125

RESUMO

Purpose: Sepsis is a clinical syndrome defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis is a highly heterogeneous syndrome with distinct phenotypes that impact immune function and response to infection. To develop targeted therapeutics, immunophenotyping is needed to identify distinct functional phenotypes of immune cells. In this study, we utilized our Organ-on-Chip assay to categorize sepsis patients into distinct phenotypes using patient data, neutrophil functional analysis, and proteomics. Methods: Following informed consent, neutrophils and plasma were isolated from sepsis patients in the Temple University Hospital ICU (n=45) and healthy control donors (n=7). Human lung microvascular endothelial cells (HLMVEC) were cultured in the Organ-on-Chip and treated with buffer or cytomix ((TNF/IL-1ß/IFNγ). Neutrophil adhesion and migration across HLMVEC in the Organ-on-Chip were used to categorize functional neutrophil phenotypes. Quantitative label-free global proteomics was performed on neutrophils to identify differentially expressed proteins. Plasma levels of sepsis biomarkers and neutrophil extracellular traps (NETs) were determined by ELISA. Results: We identified three functional phenotypes in critically ill ICU sepsis patients based on ex vivo neutrophil adhesion and migration patterns. The phenotypes were classified as: Hyperimmune characterized by enhanced neutrophil adhesion and migration, Hypoimmune that was unresponsive to stimulation, and Hybrid with increased adhesion but blunted migration. These functional phenotypes were associated with distinct proteomic signatures and differentiated sepsis patients by important clinical parameters related to disease severity. The Hyperimmune group demonstrated higher oxygen requirements, increased mechanical ventilation, and longer ICU length of stay compared to the Hypoimmune and Hybrid groups. Patients with the Hyperimmune neutrophil phenotype had significantly increased circulating neutrophils and elevated plasma levels NETs. Conclusion: Neutrophils and NETs play a critical role in vascular barrier dysfunction in sepsis and elevated NETs may be a key biomarker identifying the Hyperimmune group. Our results establish significant associations between specific neutrophil functional phenotypes and disease severity and identify important functional parameters in sepsis pathophysiology that may provide a new approach to classify sepsis patients for specific therapeutic interventions.


Assuntos
Neutrófilos , Sepse , Humanos , Neutrófilos/metabolismo , Células Endoteliais , Proteômica , Biomarcadores/metabolismo , Fenótipo , Gravidade do Paciente
18.
Biochem Biophys Res Commun ; 437(1): 134-9, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23806685

RESUMO

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required - a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3' portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state.


Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Aminoácidos/metabolismo , Sequência de Bases , Células HEK293 , Humanos , Mutação/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Mater Today Bio ; 19: 100567, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36747581

RESUMO

Engineered mesenchymal stem cells (MSCs) have been investigated extensively for gene delivery and, more recently, for targeted small molecule delivery. While preclinical studies demonstrate the potential of MSCs for targeted delivery, clinical studies suggest that tumor homing of native MSCs may be inefficient. We report here a surprising finding that loading MSCs with the anticancer drug paclitaxel (PTX) by nanoengineering results in significantly improved tumor homing compared to naïve MSCs. Loading PTX in MSCs results in increased levels of mitochondrial reactive oxygen species (ROS). In response to this oxidative stress, MSCs upregulate two important set of proteins. First were critical antioxidant proteins, most importantly nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of antioxidant responses; upregulation of antioxidant proteins may explain how MSCs protect themselves from drug-induced oxidative stress. The second was CXCR4, a direct target of Nrf2 and a key mediator of tumor homing; upregulation of CXCR4 suggested a mechanism that may underlie the improved tumor homing of nanoengineered MSCs. In addition to demonstrating the potential mechanism of improved tumor targeting of nanoengineered MSCs, our studies reveal that MSCs utilize a novel mechanism of resistance against drug-induced oxidative stress and cell death, explaining how MSCs can deliver therapeutic concentrations of cytotoxic payload while maintaining their viability.

20.
Sci Transl Med ; 15(715): eade2966, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756380

RESUMO

Hepatic fibrosis is the primary determinant of mortality in patients with metabolic dysfunction-associated steatohepatitis (MASH). Transforming growth factor-ß (TGFß), a master profibrogenic cytokine, is a promising therapeutic target that has not yet been translated into an effective therapy in part because of liabilities associated with systemic TGFß antagonism. We have identified that soluble folate receptor γ (FOLR3), which is expressed in humans but not in rodents, is a secreted protein that is elevated in the livers of patients with MASH but not in those with metabolic dysfunction-associated steatotic liver disease, those with type II diabetes, or healthy individuals. Global proteomics showed that FOLR3 was the most highly significant MASH-specific protein and was positively correlated with increasing fibrosis stage, consistent with stimulation of activated hepatic stellate cells (HSCs), which are the key fibrogenic cells in the liver. Exposure of HSCs to exogenous FOLR3 led to elevated extracellular matrix (ECM) protein production, an effect synergistically potentiated by TGFß1. We found that FOLR3 interacts with the serine protease HTRA1, a known regulator of TGFBR, and activates TGFß signaling. Administration of human FOLR3 to mice induced severe bridging fibrosis and an ECM pattern resembling human MASH. Our study thus uncovers a role of FOLR3 in enhancing fibrosis.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta , Células Estreladas do Fígado , Ácido Fólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA