Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Immunol Rev ; 276(1): 66-79, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28258694

RESUMO

Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos B7/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Animais , Antígenos B7/genética , Antígenos B7/imunologia , Terapia Combinada , Genoma , Humanos , Ativação Linfocitária , Neoplasias/imunologia
2.
Proc Natl Acad Sci U S A ; 111(41): 14846-51, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267631

RESUMO

V domain-containing Ig suppressor of T-cell activation (VISTA) is a negative checkpoint regulator that suppresses T cell-mediated immune responses. Previous studies using a VISTA-neutralizing monoclonal antibody show that VISTA blockade enhances T-cell activation. The current study describes a comprehensive characterization of mice in which the gene for VISTA has been deleted. Despite the apparent normal hematopoietic development in young mice, VISTA genetic deficiency leads to a gradual accumulation of spontaneously activated T cells, accompanied by the production of a spectrum of inflammatory cytokines and chemokines. Enhanced T-cell responsiveness was also observed upon immunization with neoantigen. Despite the presence of multiorgan chronic inflammation, aged VISTA-deficient mice did not develop systemic or organ-specific autoimmune disease. Interbreeding of the VISTA-deficient mice with 2D2 T-cell receptor transgenic mice, which are predisposed to the development of experimental autoimmune encephalomyelitis, drastically enhanced disease incidence and intensity. Disease development is correlated with the increase in the activation of encephalitogenic T cells in the periphery and enhanced infiltration into the CNS. Taken together, our data suggest that VISTA is a negative checkpoint regulator whose loss of function lowers the threshold for T-cell activation, allowing for an enhanced proinflammatory phenotype and an increase in the frequency and intensity of autoimmunity under susceptible conditions.


Assuntos
Autoimunidade/genética , Autoimunidade/imunologia , Antígenos B7/genética , Predisposição Genética para Doença , Inflamação/patologia , Envelhecimento/patologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Antígenos B7/deficiência , Antígenos B7/metabolismo , Quimiocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Hematopoese , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Th1/imunologia , Células Th17/imunologia
3.
Cell Tissue Res ; 358(3): 821-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25322709

RESUMO

Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa. We found that Cav-1 (+/+) mice harboring Cav-1 (-/-) BM-derived macrophages developed significantly larger lesions than Cav-1 (+/+) mice harboring Cav-1 (+/+) BM-derived macrophages. Cav-1 (-/-) macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.


Assuntos
Aterosclerose/patologia , Caveolina 1/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/sangue , Transplante de Medula Óssea , Caveolina 1/deficiência , Citocinas/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/sangue , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
4.
Breast Cancer Res ; 15(5): R87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060386

RESUMO

INTRODUCTION: Previous studies have identified cholesterol as an important regulator of breast cancer development. High-density lipoprotein (HDL) and its cellular receptor, the scavenger receptor class B type I (SR-BI) have both been implicated in the regulation of cellular cholesterol homeostasis, but their functions in cancer remain to be established. METHODS: In the present study, we have examined the role of HDL and SR-BI in the regulation of cellular signaling pathways in breast cancer cell lines and in the development of tumor in a mouse xenograft model. RESULTS: Our data show that HDL is capable of stimulating migration and can activate signal transduction pathways in the two human breast cancer cell lines, MDA-MB-231 and MCF7. Furthermore, we also show that knockdown of the HDL receptor, SR-BI, attenuates HDL-induced activation of the phosphatidylinositol 3-kinase (PI3K)/protein Kinase B (Akt) pathway in both cell lines. Additional investigations show that inhibition of the PI3K pathway, but not that of the mitogen-activated protein kinase (MAPK) pathway, could lead to a reduction in cellular proliferation in the absence of SR-BI. Importantly, whereas the knockdown of SR-BI led to decreased proliferation and migration in vitro, it also led to a significant reduction in tumor growth in vivo. Most important, we also show that pharmacological inhibition of SR-BI can attenuate signaling and lead to decreased cellular proliferation in vitro. Taken together, our data indicate that both cholesteryl ester entry via HDL-SR-BI and Akt signaling play an essential role in the regulation of cellular proliferation and migration, and, eventually, tumor growth. CONCLUSIONS: These results identify SR-BI as a potential target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Antígenos CD36/metabolismo , Transformação Celular Neoplásica , Colesterol/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antígenos CD36/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Colesterol/farmacologia , HDL-Colesterol/metabolismo , HDL-Colesterol/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Carga Tumoral/genética
5.
Am J Pathol ; 181(1): 278-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22698676

RESUMO

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).


Assuntos
Envelhecimento/fisiologia , Anticarcinógenos/uso terapêutico , Caveolina 1/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Sirolimo/uso terapêutico , Animais , Caveolina 1/deficiência , Feminino , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Ovariectomia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099496

RESUMO

Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Animais , Camundongos , RNA Guia de Sistemas CRISPR-Cas , Linfócitos do Interstício Tumoral , Imunoterapia Adotiva , Neoplasias/genética , Edição de Genes , Proteína 1 Supressora da Sinalização de Citocina/genética
7.
J Exp Med ; 203(12): 2715-25, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17101734

RESUMO

T helper (Th)17 cells producing interleukin (IL)-17 play a role in autoimmune and allergic inflammation. Here, we show that IL-23 induces IL-17 in the lung and IL-17 is required during antigen sensitization to develop allergic asthma, as shown in IL-17R-deficient mice. Since IL-17 expression increased further upon antigen challenge, we addressed its function in the effector phase. Most strikingly, neutralization of IL-17 augmented the allergic response in sensitized mice. Conversely, exogenous IL-17 reduced pulmonary eosinophil recruitment and bronchial hyperreactivity, demonstrating a novel regulatory role of IL-17. Mechanistically, IL-17 down modulated eosinophil-chemokine eotaxin (CCL11) and thymus- and activation-regulated chemokine/CCL17 (TARC) in lungs in vivo and ex vivo upon antigen restimulation. In vitro, IL-17 reduced TARC production in dendritic cells (DCs)-the major source of TARC-and antigen uptake by DCs and IL-5 and IL-13 production in regional lymph nodes. Furthermore, IL-17 is regulated in an IL-4-dependent manner since mice deficient for IL-4Ralpha signaling showed a marked increase in IL-17 concentration with inhibited eosinophil recruitment. Therefore, endogenous IL-17 is controlled by IL-4 and has a dual role. Although it is essential during antigen sensitization to establish allergic asthma, in sensitized mice IL-17 attenuates the allergic response by inhibiting DCs and chemokine synthesis.


Assuntos
Asma/imunologia , Asma/prevenção & controle , Interleucina-17/fisiologia , Alérgenos/administração & dosagem , Animais , Asma/patologia , Células Cultivadas , Quimiocina CCL11 , Quimiocina CCL17 , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/biossíntese , Quimiocinas CC/antagonistas & inibidores , Quimiocinas CC/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem
8.
Am J Pathol ; 178(1): 402-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21224077

RESUMO

Diet and obesity are important risk factors for cancer development. Many studies have suggested an important role for several dietary nutrients in the progression and development of breast cancer. However, few studies have specifically addressed the role of components of a Western diet as important factors involved in breast cancer initiation and progression. The present study examined the role of cholesterol in the regulation of tumor progression in a mouse model of mammary tumor formation. The results suggest that cholesterol accelerates and enhances tumor formation. In addition, tumors were more aggressive, and tumor angiogenesis was enhanced. Metabolism of cholesterol was also examined in this mouse model. It was observed that plasma cholesterol levels were reduced during tumor development but not prior to its initiation. These data provide new evidence for an increased utilization of cholesterol by tumors and for its role in tumor formation. Taken together, these results imply that an increase in plasma cholesterol levels accelerates the development of tumors and exacerbates their aggressiveness.


Assuntos
Neoplasias da Mama/etiologia , Transformação Celular Neoplásica , Colesterol/efeitos adversos , Dieta/efeitos adversos , Neoplasias Mamárias Experimentais/etiologia , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Colesterol/administração & dosagem , Colesterol/sangue , Feminino , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Biossíntese de Proteínas
9.
Adv Exp Med Biol ; 729: 83-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22411315

RESUMO

The current chapter focuses on the role of Caveolin-1 (Cav-1) in cellular growth with an emphasis on its implication in breast cancer initiation, progression, clinical prognosis and as a potential therapeutic target. The role of Cav-1 as a tumor suppressor in breast cancer has emerged in the past few years, with dual functions on both cancer epithelium as well as the cancer stroma. Its multiple functions as a regulator of estrogen signaling and kinase activity and its newly found role as an important factor controlling the dynamic relationship between cancer epithelia and stroma position Cav-1 as a new therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caveolina 1/deficiência , Caveolina 1/genética , Proliferação de Células , Estrogênios/metabolismo , Humanos , Mutação , Transdução de Sinais , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
10.
Am J Physiol Heart Circ Physiol ; 300(4): H1274-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21297026

RESUMO

Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, ß-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced ß-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in ß-adrenergic signaling.


Assuntos
Caveolina 1/deficiência , Infarto do Miocárdio/mortalidade , Animais , Caveolina 1/genética , Caveolina 1/fisiologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/fisiopatologia , Fosforilação , Receptores Adrenérgicos beta/biossíntese , Volume Sistólico/fisiologia , Ultrassonografia
11.
Mol Cancer Res ; 19(7): 1196-1207, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771882

RESUMO

Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamins are found in many cancers and its expression is correlated with better clinical outcomes. The nucleus is the largest organelle in the cell with a diameter between 10 and 20 µm. Nuclear size significantly impacts cell migration. Nuclear structural changes are predicted to impact cancer metastasis by regulating cancer cell migration. Here we show emerin regulates nuclear structure in invasive breast cancer cells to impact cancer metastasis. Invasive breast cancer cells had 40% to 50% less emerin than control cells, which resulted in decreased nuclear size. Overexpression of GFP-emerin in invasive breast cancer cells rescued nuclear size and inhibited migration through 3.0 and 8.0 µm pores. Mutational analysis showed emerin binding to nucleoskeletal proteins was important for its regulation of nuclear structure, migration, and invasion. Importantly, emerin expression inhibited lung metastasis by 91% in orthotopic mouse models of breast cancer. Emerin nucleoskeleton-binding mutants failed to inhibit metastasis. These results support a model whereby emerin binding to the nucleoskeleton regulates nuclear structure to impact metastasis. In this model, emerin plays a central role in metastatic transformation, because decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. IMPLICATIONS: Modulating emerin expression and function represents new targets for therapeutic interventions of metastasis, because increased emerin expression rescued cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Núcleo Celular/genética , Proteínas de Membrana/genética , Matriz Nuclear/genética , Proteínas Nucleares/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos Nus , Microscopia Confocal/métodos , Metástase Neoplásica , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Transplante Heterólogo
12.
Am J Pathol ; 174(6): 2023-34, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19411448

RESUMO

Previously, we showed that caveolin-1 (Cav-1) expression is down-regulated in human breast cancer-associated fibroblasts. However, it remains unknown whether loss of Cav-1 occurs in the breast tumor stroma in vivo. Here, we immunostained a well-annotated breast cancer tissue microarray with antibodies against Cav-1 and scored its stromal expression. An absence of stromal Cav-1 was associated with early disease recurrence, advanced tumor stage, and lymph node metastasis, resulting in a 3.6-fold reduction in progression-free survival. When tamoxifen-treated patients were selected, an absence of stromal Cav-1 was a strong predictor of poor clinical outcome, suggestive of tamoxifen resistance. Interestingly, in lymph node-positive patients, an absence of stromal Cav-1 predicted an 11.5-fold reduction in 5-year progression-free survival. Clinical outcomes among patients positive for HER2, and patients triple-negative for estrogen receptor, progesterone receptor and HER2, were also strictly dependent on stromal Cav-1 levels. When our results were adjusted for tumor and nodal staging, an absence of stromal Cav-1 remained an independent predictor of poor outcome. Thus, stromal Cav-1 expression can be used to stratify human breast cancer patients into low-risk and high-risk groups, and to predict their risk of early disease recurrence at diagnosis. Based on related mechanistic studies, we suggest that breast cancer patients lacking stromal Cav-1 might benefit from anti-angiogenic therapy in addition to standard regimens. We conclude that Cav-1 functions as a tumor suppressor in the stromal microenvironment.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Caveolina 1/biossíntese , Tecido Conjuntivo/metabolismo , Recidiva Local de Neoplasia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Linfática/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico , Análise Serial de Tecidos , Resultado do Tratamento
13.
Am J Pathol ; 174(3): 746-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234134

RESUMO

Recently, we reported that human breast cancer-associated fibroblasts show functional inactivation of the retinoblastoma (RB) tumor suppressor and down-regulation of caveolin-1 (Cav-1) protein expression. However, it remains unknown whether loss of Cav-1 is sufficient to confer functional RB inactivation in mammary fibroblasts. To establish a direct cause-and-effect relationship, mammary stromal fibroblasts (MSFs) were prepared from Cav-1(-/-) null mice and subjected to phenotypic analysis. Here, we provide evidence that Cav-1(-/-) MSFs share many characteristics with human cancer-associated fibroblasts. The Cav-1(-/-) MSF transcriptome significantly overlaps with human cancer-associated fibroblasts; both show a nearly identical profile of RB/E2F-regulated genes that are up-regulated, which is consistent with RB inactivation. This Cav-1(-/-) MSF gene signature is predictive of poor clinical outcome in breast cancer patients treated with tamoxifen. Consistent with these findings, Cav-1(-/-) MSFs show RB hyperphosphorylation and the up-regulation of estrogen receptor co-activator genes. We also evaluated the paracrine effects of "conditioned media" prepared from Cav-1(-/-) MSFs on wild-type mammary epithelia. Our results indicate that Cav-1(-/-) MSF "conditioned media" is sufficient to induce an epithelial-mesenchymal transition, indicative of an invasive phenotype. Proteomic analysis of this "conditioned media" reveals increased levels of proliferative/angiogenic growth factors. Consistent with these findings, Cav-1(-/-) MSFs are able to undergo endothelial-like transdifferentiation. Thus, these results have important implications for understanding the role of cancer-associated fibroblasts and RB inactivation in promoting tumor angiogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caveolina 1/deficiência , Caveolina 1/genética , Fibroblastos/patologia , Células Estromais/patologia , Western Blotting , Mama/citologia , Mama/fisiologia , Neoplasias da Mama/mortalidade , Técnicas de Cultura de Células , Divisão Celular , Progressão da Doença , Intervalo Livre de Doença , Células Epiteliais/citologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Neoplásico/genética , Células Estromais/citologia , Células Estromais/fisiologia , Análise de Sobrevida
14.
Am J Pathol ; 174(2): 613-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19164602

RESUMO

Here, we show that functional loss of a single gene is sufficient to confer constitutive milk protein production and protection against mammary tumor formation. Caveolin-3 (Cav-3), a muscle-specific caveolin-related gene, is highly expressed in muscle cells. We demonstrate that Cav-3 is also expressed in myoepithelial cells within the mammary gland. To determine whether genetic ablation of Cav-3 expression affects adult mammary gland development, we studied the phenotype(s) of Cav-3(-/-)-null mice. Interestingly, Cav-3(-/-) virgin mammary glands developed lobulo-alveolar hyperplasia, akin to the changes normally observed during pregnancy and lactation. Genome-wide expression profiling revealed up-regulation of gene transcripts associated with pregnancy/lactation, mammary stem cells, and human breast cancers, consistent with a constitutive lactogenic phenotype. Expression levels of three key transcriptional regulators of lactation, namely Elf5, Stat5a, and c-Myc, were also significantly elevated. Experiments with pregnant mice directly showed that Cav-3(-/-) mice underwent precocious lactation. Finally, using orthotopic tumor cell implantation, we demonstrated that virgin Cav-3(-/-) mice were dramatically protected against mammary tumor formation. Thus, Cav-3(-/-) mice are a novel preclinical model to study the protective effects of a lactogenic microenvironment on mammary tumor onset and progression. Our current studies have broad implications for using the lactogenic microenvironment as a paradigm to discover new therapies for the prevention and/or treatment of human breast cancers.


Assuntos
Caveolina 3/genética , Caveolina 3/metabolismo , Expressão Gênica , Lactação/fisiologia , Neoplasias Mamárias Experimentais/genética , Animais , Movimento Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Mutantes , Leite Humano/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Gravidez
15.
Am J Pathol ; 174(4): 1172-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19342371

RESUMO

Caveolin-1 (Cav-1) loss-of-function mutations are exclusively associated with estrogen receptor-positive (ER(+)) human breast cancers. To dissect the role of Cav-1 loss-of-function in the pathogenesis of human breast cancers, we used Cav-1(-/-) null mice as a model system. First, we demonstrated that Cav-1(-/-) mammary epithelia overexpress two well-established ER co-activator genes, CAPER and Foxa1, in addition to ER-alpha. Thus, the functional loss of Cav-1 may be sufficient to confer estrogen-hypersensitivity in the mammary gland. To test this hypothesis directly, we subjected Cav-1(-/-) mice to ovariectomy and estrogen supplementation. As predicted, Cav-1(-/-) mammary glands were hyper-responsive to estrogen and developed dysplastic mammary lesions with adjacent stromal angiogenesis that resemble human ductal carcinoma in situ. Based on an extensive biomarker analysis, these Cav-1(-/-) mammary lesions contain cells that are hyperproliferative and stain positively with nucleolar (B23/nucleophosmin) and stem/progenitor cell markers (SPRR1A and beta-catenin). Genome-wide transcriptional profiling identified many estrogen-related genes that were over-expressed in Cav-1(-/-) mammary glands, including CAPER--an ER co-activator gene and putative stem/progenitor cell marker. Analysis of human breast cancer samples revealed that CAPER is overexpressed and undergoes a cytoplasmic-to-nuclear shift during the transition from pre-malignancy to ductal carcinoma in situ. Thus, Cav-1(-/-) null mice are a new preclinical model for studying the molecular paradigm of estrogen hypersensitivity and the development of estrogen-dependent ductal carcinoma in situ lesions.


Assuntos
Carcinoma Intraductal não Infiltrante/genética , Caveolina 1/genética , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Animais , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Caveolina 1/deficiência , Transformação Celular Neoplásica/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Análise Serial de Tecidos , Transativadores/genética , Transativadores/metabolismo
16.
Am J Pathol ; 174(5): 1650-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19395651

RESUMO

Here we used the Met-1 cell line in an orthotopic transplantation model in FVB/N mice to dissect the role of the Cav-1(P132L) mutation in human breast cancer. Identical experiments were performed in parallel with wild-type Cav-1. Cav-1(P132L) up-regulated the expression of estrogen receptor-alpha as predicted, because only estrogen receptor-alpha-positive patients have been shown to harbor Cav-1(P132L) mutations. In the context of primary tumor formation, Cav-1(P132L) behaved as a loss-of-function mutation, lacking any tumor suppressor activity. In contrast, Cav-1(P132L) caused significant increases in cell migration, invasion, and experimental metastasis, consistent with a gain-of-function mutation. To identify possible molecular mechanism(s) underlying this invasive gain-of-function activity, we performed unbiased gene expression profiling. From this analysis, we show that the Cav-1(P132L) expression signature contains numerous genes that have been previously associated with cell migration, invasion, and metastasis. These include i) secreted growth factors and extracellular matrix proteins (Cyr61, Plf, Pthlh, Serpinb5, Tnc, and Wnt10a), ii) proteases that generate EGF and HGF (Adamts1 and St14), and iii) tyrosine kinase substrates and integrin signaling/adapter proteins (Akap13, Cdcp1, Ddef1, Eps15, Foxf1a, Gab2, Hs2st1, and Itgb4). Several of the P132L-specific genes are also highly expressed in stem/progenitor cells or are associated with myoepithelial cells, suggestive of an epithelial-mesenchymal transition. These results directly support clinical data showing that patients harboring Cav-1 mutations are more likely to undergo recurrence and metastasis.


Assuntos
Biomarcadores Tumorais/genética , Caveolina 1/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Mutação/genética , Células-Tronco Neoplásicas/patologia , Animais , Biomarcadores Tumorais/metabolismo , Western Blotting , Caveolina 1/metabolismo , Movimento Celular , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Animais/metabolismo , Camundongos , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Transdução de Sinais
17.
Cancer Biol Ther ; 21(6): 506-521, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32164483

RESUMO

Triple-negative breast cancer (TNBC) displays an aggressive clinical course, heightened metastatic potential, and is linked to poor survival rates. Through its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), this subtype remains unresponsive to traditional targeted therapies. Undesirable and sometimes life-threatening side effects associated with current chemotherapeutic agents warrant the development of more targeted treatment options. Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor implicated in breast cancer (BCa) progression, has proven to be an efficient approach to halt cancer growth in vitro and in vivo. Currently, there are no FDA-approved STAT3 inhibitors for TNBC. Although pimozide, a FDA-approved antipsychotic drug, has been attributed a role as a STAT3 inhibitor in several cancers, its role on this pathway remains unexplored in TNBC. As a "one size fits all" approach cannot be applied to TNBC therapies due to the heterogeneous nature of this aggressive cancer, we hypothesized that STAT3 could be a novel biomarker of response to guide pimozide therapy. Using human cell lines representative of four TNBC subtypes (basal-like 1, basal-like 2, mesenchymal-like, mesenchymal stem-like), our current report demonstrates that pimozide significantly reduced their invasion and migration, an effect that was predicted by STAT3 phosphorylation on tyrosine residue 705 (Tyr705). Mechanistically, phosphorylated STAT3 (Tyr705) inhibition resulting from pimozide treatment caused a downregulation of downstream transcriptional targets such as matrix metalloproteinase-9 (MMP-9) and vimentin, both implicated in invasion and migration. The identification of biomarkers of response to TNBC treatments is an active area of research in the field of precision medicine and our results propose phosphorylated STAT3 (Tyr705) as a novel biomarker to guide pimozide treatment as an inhibitor of invasion and migration.


Assuntos
Biomarcadores Tumorais/metabolismo , Antagonistas de Dopamina/farmacologia , Pimozida/farmacologia , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Humanos , Fosforilação , Fator de Transcrição STAT3/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas
18.
Aging (Albany NY) ; 12(14): 15104-15120, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32633727

RESUMO

Ductal carcinoma in situ (DCIS) is one of the earliest stages of breast cancer (BCa). The mechanisms by which DCIS lesions progress to an invasive state while others remain indolent are yet to be fully characterized and both diagnosis and treatment of this pre-invasive disease could benefit from better understanding the pathways involved. While a decreased expression of Caveolin-1 (Cav-1) in the tumor microenvironment of patients with DCIS breast cancer was linked to progression to invasive breast cancer (IBC), the downstream effector(s) contributing to this process remain elusive. The current report shows elevated expression of Signal Transducer and Activator of Transcription 5a (STAT5a) within the DCIS-like lesions in Cav-1 KO mice following estrogen treatment and inhibition of STAT5a expression prevented the formation of these mammary lesions. In addition, STAT5a overexpression in a human DCIS cell line (MCF10DCIS.com) promoted their invasion, a process accelerated by estrogen treatment and associated with increased levels of the matrix metalloproteinase-9 (MMP-9) precursor. In sum, our results demonstrate a novel regulatory axis (Cav-1♦STAT5a♦MMP-9) in DCIS that is fully activated by the presence of estrogen. Our sudies suggest to further study phosphorylated STAT5a (Y694) as a potential biomarker to guide and predict outcome of DCIS patient population.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Caveolina 1/metabolismo , Estrogênios , Invasividade Neoplásica , Fator de Transcrição STAT5/metabolismo , Animais , Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Progressão da Doença , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Fosforilação , Microambiente Tumoral
19.
Cell Cycle ; 19(4): 432-447, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931653

RESUMO

Triple negative breast cancer (TNBC) is a heterogeneous disease, which lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor 2 receptor (HER2). This subtype of breast cancer has the poorest prognosis with limited therapies currently available, and hence additional options are needed. CAPER is a coactivator of the activator protein-1 (AP-1) (interacting specifically with the c-Jun component) and the ER and is known to be involved in human breast cancer pathogenesis. Recent published data have demonstrated a role for CAPER in TNBC and, as such, disrupting the function of CAPER with c-Jun could be a novel approach to treat TNBC patients. The data presented here shows the development and in vitro testing of CAPER-derived peptides that inhibit the coactivator activity of CAPER with c-Jun. These CAPER peptides result in a decrease in cell number and an increase in apoptosis in two TNBC cell lines, MDA-MB-231 and BT-549, while having no effect on the non-tumorigenic cell line MCF 10A. Additionally, two modes of action were demonstrated which appear to be cell line dependent: 1) a modulation of phosphorylated c-Jun leading to a decrease in Bcl-2 in MDA-MB-231 cells and a decrease in p21 in BT-549 cells and 2) a decrease in DNA repair proteins, leading to impaired DNA repair function in MDA-MB-231 cells. The data presented here supports further development of CAPER-derived peptides for the treatment of TNBC.


Assuntos
Peptídeos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Recombinantes/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
20.
Science ; 367(6475)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949051

RESUMO

Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.


Assuntos
Antígenos B7/fisiologia , Proteínas de Membrana/fisiologia , Tolerância Periférica/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais , Antígenos B7/genética , Ativação Linfocitária , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tolerância Periférica/genética , Receptores de Antígenos de Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA