Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 26(20): 4413-22, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17898804

RESUMO

Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA-binding protein ParR and its cognate centromere site parC on the DNA. The partition complex is recognized by a second partition protein, the actin-like ATPase ParM, which forms filaments required for the active bidirectional movement of DNA replicates. Here, we present the 2.8 A crystal structure of ParR from E. coli plasmid pB171. ParR forms a tight dimer resembling a large family of dimeric ribbon-helix-helix (RHH)2 site-specific DNA-binding proteins. Crystallographic and electron microscopic data further indicate that ParR dimers assemble into a helix structure with DNA-binding sites facing outward. Genetic and biochemical experiments support a structural arrangement in which the centromere-like parC DNA is wrapped around a ParR protein scaffold. This structure holds implications for how ParM polymerization drives active DNA transport during plasmid partition.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Topoisomerase IV/metabolismo , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Proteínas Repressoras/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Centrômero/ultraestrutura , Cristalografia por Raios X/métodos , Replicação do DNA , Dimerização , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular
2.
J Mol Biol ; 355(2): 211-23, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16305802

RESUMO

Clonable contrasting agents for light microscopy, such as green fluorescent protein, have revolutionized biology, but few such agents have been developed for transmission electron microscopy (TEM). As an attempt to develop a novel clonable contrasting agent for TEM, we have evaluated metallothionein, a small metal-binding protein, reacted with aurothiomalate, an anti-arthritic gold compound. Electro spray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry measurements show a distribution of gold atoms bound to individual metallothionein molecules. Unlike previous reports, these data show gold binding occurred as the addition of single atoms without retention of additional ligands. Moreover, under certain conditions, MALDI spectra show gold binding ratios of greater than 1:1 with the cysteine residues of metallothionein. Together, this may hint at a gold-binding mechanism similar to gold nanocluster formation. Finally, metallothionein-gold complexes visualized in the TEM show a range of sizes similar to those used as current TEM labels, and show the potential of the protein as a clonable TEM label in which the gold cluster is grown on the label, thereby circumventing the problems associated with attaching gold clusters.


Assuntos
Ouro/química , Metalotioneína/química , Microscopia Eletrônica de Transmissão/métodos , Nanoestruturas/química , Tiomalato Sódico de Ouro/química , Indicadores e Reagentes , Ligantes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
3.
Structure ; 19(2): 147-54, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21300284

RESUMO

Electron cryotomography provides nanometer resolution structural detail of thin biological specimens in a near-native state. Currently, its application is limited by the lack of a specific label for the identification of molecules. Our aim was to develop such a label, analogous to GFP used in fluorescence microscopy. Here, we demonstrate the use of Escherichia coli ferritin FtnA protein as a clonable label for electron cryotomography. Overproduced ferritin is visible in E. coli cells using cryotomography and fusing this label to a short membrane targeting sequence correctly directs the ferritin fusion to the membrane. Using two proteins with known subcellular localization patterns with this ferritin tag, also including GFP, we obtained essentially the same labeling patterns using electron cryotomography as compared with fluorescence light microscopy. Hence, the ferritin label localizes efficiently and faithfully and it will be a valuable tool for the unambiguous identification of molecules in cellular electron cryotomograms.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Ferritinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Sondas Moleculares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Ferritinas/genética , Ferritinas/ultraestrutura , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Sondas Moleculares/genética , Proteínas Recombinantes de Fusão/genética
4.
J Struct Biol ; 160(1): 70-82, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17692533

RESUMO

Localization of proteins in cells or complexes using electron microscopy has mainly relied upon the use of heavy metal clusters, which can be difficult to direct to sites of interest. For this reason, we would like to develop a clonable tag analogous to the clonable fluorescent tags common to light microscopy. Instead of fluorescing, such a tag would initiate formation of a heavy metal cluster. To test the feasibility of such a tag, we exploited the metal-binding protein, metallothionein (MT). We created a chimeric protein by fusing one or two copies of the MT gene to the gene for maltose binding protein. These chimeric proteins bound many gold atoms, with a conservative value of 16 gold atoms per copy of metallothionein. Visualization of gold-labeled fusion proteins by scanning electron microscopy required one copy of metallothionein while transmission electron microscopy required two copies. Images of frozen-hydrated samples of simple complexes made with anti-MBP antibodies hint at the usefulness of this method.


Assuntos
Ouro/química , Metalotioneína/química , Sequência de Bases , Clonagem Molecular , Primers do DNA , Metalotioneína/isolamento & purificação , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
5.
Mol Cell ; 23(4): 457-69, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916635

RESUMO

FtsK is a DNA translocase that coordinates chromosome segregation and cell division in bacteria. In addition to its role as activator of XerCD site-specific recombination, FtsK can translocate double-stranded DNA (dsDNA) rapidly and directionally and reverse direction. We present crystal structures of the FtsK motor domain monomer, showing that it has a RecA-like core, the FtsK hexamer, and also showing that it is a ring with a large central annulus and a dodecamer consisting of two hexamers, head to head. Electron microscopy (EM) demonstrates the DNA-dependent existence of hexamers in solution and shows that duplex DNA passes through the middle of each ring. Comparison of FtsK monomer structures from two different crystal forms highlights a conformational change that we propose is the structural basis for a rotary inchworm mechanism of DNA translocation.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , DNA Helicases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Hidrólise , Integrases/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Helicases/metabolismo , Recombinases Rec A/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA