Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(11): 709-21, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993292

RESUMO

Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.


Assuntos
Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Centrossomo/química , Centrossomo/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Estrutura Quaternária de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
2.
J Cell Sci ; 133(11)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32317396

RESUMO

γ-Tubulin is the main protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (γ-tubulin complex proteins): γ-tubulin small complexes (γTuSCs) that contain γ-tubulin, and GCPs 2 and 3; and γ-tubulin ring complexes (γTuRCs) that contain multiple γTuSCs in addition to GCPs 4, 5 and 6. Whereas the structure and assembly properties of γTuSCs have been intensively studied, little is known about the assembly of γTuRCs and the specific roles of GCPs 4, 5 and 6. Here, we demonstrate that two copies of GCP4 and one copy each of GCP5 and GCP6 form a salt (KCl)-resistant sub-complex within the γTuRC that assembles independently of the presence of γTuSCs. Incubation of this sub-complex with cytoplasmic extracts containing γTuSCs leads to the reconstitution of γTuRCs that are competent to nucleate microtubules. In addition, we investigate sequence extensions and insertions that are specifically found at the N-terminus of GCP6, and between the GCP6 grip1 and grip2 motifs. We also demonstrate that these are involved in the assembly or stabilization of the γTuRC.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Centrossomo , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos , Microtúbulos , Tubulina (Proteína)/genética
3.
EMBO J ; 33(2): 114-28, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24421324

RESUMO

γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Células HeLa , Humanos , Complexos Multiproteicos/fisiologia
4.
Am J Hum Genet ; 96(4): 666-74, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25817018

RESUMO

We have identified TUBGCP4 variants in individuals with autosomal-recessive microcephaly and chorioretinopathy. Whole-exome sequencing performed on one family with two affected siblings and independently on another family with one affected child revealed compound-heterozygous mutations in TUBGCP4. Subsequent Sanger sequencing was performed on a panel of individuals from 12 French families affected by microcephaly and ophthalmic manifestations, and one other individual was identified with compound-heterozygous mutations in TUBGCP4. One synonymous variant was common to all three families and was shown to induce exon skipping; the other mutations were frameshift mutations and a deletion. TUBGCP4 encodes γ-tubulin complex protein 4, a component belonging to the γ-tubulin ring complex (γ-TuRC) and known to regulate the nucleation and organization of microtubules. Functional analysis of individual fibroblasts disclosed reduced levels of the γ-TuRC, altered nucleation and organization of microtubules, abnormal nuclear shape, and aneuploidy. Moreover, zebrafish treated with morpholinos against tubgcp4 were found to have reduced head volume and eye developmental anomalies with chorioretinal dysplasia. In summary, the identification of TUBGCP4 mutations in individuals with microcephaly and a spectrum of anomalies in eye development, particularly photoreceptor anomalies, provides evidence of an important role for the γ-TuRC in brain and eye development.


Assuntos
Doenças da Coroide/genética , Oftalmopatias Hereditárias/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Doenças Retinianas/genética , Tubulina (Proteína)/metabolismo , Sequência de Bases , Exoma/genética , Mutação da Fase de Leitura/genética , França , Componentes do Gene , Humanos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
5.
J Cell Sci ; 129(22): 4227-4237, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802164

RESUMO

Myotubes are syncytial cells generated by fusion of myoblasts. Among the numerous nuclei in myotubes of skeletal muscle fibres, the majority are equidistantly positioned at the periphery, except for clusters of multiple nuclei underneath the motor endplate. The correct positioning of nuclei is thought to be important for muscle function and requires nesprin-1 (also known as SYNE1), a protein of the nuclear envelope. Consistent with this, mice lacking functional nesprin-1 show defective nuclear positioning and present aspects of Emery-Dreifuss muscular dystrophy. In this study, we perform small interfering RNA (siRNA) experiments in C2C12 myoblasts undergoing differentiation, demonstrating that the positioning of nuclei requires PCM-1, a protein of the centrosome that relocalizes to the nuclear envelope at the onset of differentiation in a manner that is dependent on the presence of nesprin-1. PCM-1 itself is required for recruiting proteins of the dynein-dynactin complex and of kinesin motor complexes. This suggests that microtubule motors that are attached to the nuclear envelope support the movement of nuclei along microtubules, to ensure their correct positioning in the myotube.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Diferenciação Celular , Centríolos/metabolismo , Galinhas , Proteínas do Citoesqueleto , Camundongos , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo
6.
J Biol Chem ; 291(44): 23112-23125, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27660388

RESUMO

Microtubules are nucleated from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). Small complexes (γTuSCs) comprise two molecules of γ-tubulin bound to the C-terminal domains of GCP2 and GCP3. γTuSCs associate laterally into helical structures, providing a structural template for microtubule nucleation. In most eukaryotes γTuSCs associate with additional GCPs (4, 5, and 6) to form the core of the so-called γ-tubulin ring complex (γTuRC). GCPs 2-6 constitute a family of homologous proteins. Previous structural analysis and modeling of GCPs suggest that all family members can potentially integrate into the helical structure. Here we provide experimental evidence for this model. Using chimeric proteins in which the N- and C-terminal domains of different GCPs are swapped, we show that the N-terminal domains define the functional identity of GCPs, whereas the C-terminal domains are exchangeable. FLIM-FRET experiments indicate that GCP4 and GCP5 associate laterally within the complex, and their interaction is mediated by their N-terminal domains as previously shown for γTuSCs. Our results suggest that all GCPs are incorporated into the helix via lateral interactions between their N-terminal domains, whereas the C-terminal domains mediate longitudinal interactions with γ-tubulin. Moreover, we show that binding to γ-tubulin is not essential for integrating into the helical complex.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios Proteicos , Tubulina (Proteína)/genética
7.
EMBO J ; 32(23): 3029-40, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24121310

RESUMO

Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38-independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings uncover a new two-pronged signalling response, which by coupling p38-dependent phosphorylation with MIB1-catalysed ubiquitylation of ciliogenesis-promoting factors plays an important role in controlling centriolar satellite status and key centrosomal functions in a cell stress-regulated manner.


Assuntos
Antígenos de Neoplasias/metabolismo , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/fisiologia , Cílios/fisiologia , Proteínas dos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Western Blotting , Centrossomo/fisiologia , Proteínas do Citoesqueleto , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Curr Opin Cell Biol ; 19(1): 24-30, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17178454

RESUMO

Microtubule nucleation requires gamma-tubulin, which exists in two main protein complexes: the gamma-tubulin small complex, and the gamma-tubulin ring complex. During mitosis, these complexes accumulate at the centrosome to support spindle formation. Gamma-tubulin complexes are also present at non-centrosomal microtubule nucleation sites, both in interphase and in mitosis. In interphase, non-centrosomal nucleation enables the formation of microtubule bundles or networks of branched microtubules. Gamma-tubulin complexes may be involved not only in microtubule nucleation, but also in regulating microtubule dynamics. Recent findings indicate that the dynamics of microtubule plus-ends are altered, depending on the expression of gamma-tubulin complex proteins.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/fisiologia , Proteínas do Citoesqueleto/fisiologia , Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Humanos
9.
Elife ; 132024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836552

RESUMO

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Assuntos
Camundongos Knockout , Proteínas Nucleares , Osteoclastos , Osteogênese , Animais , Camundongos , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo
10.
J Cell Biol ; 174(5): 625-30, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16943179

RESUMO

Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.


Assuntos
Antígenos/metabolismo , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Centrossomo/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Anticorpos , Antígenos/genética , Antígenos/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina A/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Replicação do DNA , Fibroblastos , Humanos , Antígeno Ki-67/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína do Retinoblastoma/metabolismo , Fase S , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Cell Biol ; 172(4): 505-15, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16461362

RESUMO

The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Proteínas de Drosophila/genética , Escherichia coli/genética , Células HeLa , Humanos , Ligação Proteica
12.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599715

RESUMO

The native γ-tubulin ring complex is an asymmetric, imperfect template for microtubule nucleation. Wieczorek et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202009146) and Zimmermann et al. (2020. Sci. Adv.https://doi.org/10.1126/sciadv.abe0894) have reconstituted a recombinant complex that allows study of structure-function relationships and regulatory mechanisms.


Assuntos
Centro Organizador dos Microtúbulos , Microtúbulos
13.
Nat Commun ; 12(1): 6042, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654813

RESUMO

Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Linhagem Celular , Centríolos/ultraestrutura , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cílios , Feminino , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/ultraestrutura , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Neurônios
14.
Curr Biol ; 17(15): 1318-25, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17658256

RESUMO

During muscle differentiation, myoblasts elongate and fuse into syncytial myotubes [1]. An early event during this process is the remodeling of the microtubule cytoskeleton, involving disassembly of the centrosome and, crucially, the alignment of microtubules into a parallel array along the long axis of the cell [2-5]. To further our understanding on how microtubules support myogenic differentiation, we analyzed the role of EB1-related microtubule-plus-end-binding proteins. We demonstrate that EB3 [6] is specifically upregulated upon myogenic differentiation and that knockdown of EB3, but not that of EB1, prevents myoblast elongation and fusion into myotubes. EB3-depleted cells show disorganized microtubules and fail to stabilize polarized membrane protrusions. Using live-cell imaging, we show that EB3 is necessary for the regulation of microtubule dynamics and microtubule capture at the cell cortex. Expression of EB1/EB3 chimeras on an EB3-depletion background revealed that myoblast fusion depends on two specific amino acids in the calponin-like domain of EB3, whereas the interaction sites with Clip-170 and CLASPs are dispensable. Our results suggest that EB3-mediated microtubule regulation at the cell cortex is a crucial step during myogenic differentiation and might be a general mechanism in polarized cell elongation.


Assuntos
Diferenciação Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mioblastos/citologia , Sequência de Aminoácidos , Animais , Células COS , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Matriz Extracelular/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Mioblastos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência
15.
Biol Cell ; 101(1): 1-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19055485

RESUMO

Mitotic spindle formation in animal cells involves microtubule nucleation from two centrosomes that are positioned at opposite sides of the nucleus. Microtubules are captured by the kinetochores and stabilized. In addition, microtubules can be nucleated independently of the centrosome and stabilized by a gradient of Ran-GTP, surrounding the mitotic chromatin. Complex regulation ensures the formation of a bipolar apparatus, involving motor proteins and controlled polymerization and depolymerization of microtubule ends. The bipolar apparatus is, in turn, responsible for faithful chromosome segregation. During recent years, a variety of experiments has indicated that defects in specific motor proteins, centrosome proteins, kinases and other proteins can induce the assembly of aberrant spindles with a monopolar morphology or with poorly separated poles. Induction of monopolar spindles may be a useful strategy for cancer therapy, since ensuing aberrant mitotic exit will usually lead to cell death. In this review, we will discuss the various underlying molecular mechanisms that may be responsible for monopolar spindle formation.


Assuntos
Segregação de Cromossomos , Fuso Acromático/patologia , Animais , Humanos , Proteínas Associadas aos Microtúbulos , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas Motores Moleculares
16.
BMC Cell Biol ; 10: 28, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19383121

RESUMO

BACKGROUND: Muscle fibres are formed by elongation and fusion of myoblasts into myotubes. During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The exact timing of this event, and the underlying molecular mechanisms are still poorly understood. RESULTS: We performed studies on mouse myoblast cell lines that were induced to differentiate in culture, to characterize the early events of centrosome protein re-localization. We demonstrate that this re-localization occurs already at the single cell stage, prior to fusion into myotubes. Centrosome proteins that accumulate at the nuclear surface form an insoluble matrix that can be reversibly disassembled if isolated nuclei are exposed to mitotic cytoplasm from Xenopus egg extract. Our microscopy data suggest that this perinuclear matrix of centrosome proteins consists of a system of interconnected fibrils. CONCLUSION: Our data provide new insights into the reorganization of centrosome proteins during muscular differentiation, at the structural and biochemical level. Because we observe that centrosome protein re-localization occurs early during differentiation, we believe that it is of functional importance for the reorganization of the cytoskeleton in the differentiation process.


Assuntos
Diferenciação Celular , Centrossomo/química , Proteínas do Citoesqueleto/análise , Mioblastos/química , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mioblastos/citologia , Mioblastos/ultraestrutura
17.
Mol Cancer ; 8: 10, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19243593

RESUMO

BACKGROUND: NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. RESULTS: We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. CONCLUSION: We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Fase G1/genética , Humanos , Linagliptina , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Purinas/farmacologia , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Proteína Supressora de Tumor p53/metabolismo , Quinase 1 Polo-Like
18.
J Cell Biol ; 159(2): 255-66, 2002 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-12403812

RESUMO

The protein PCM-1 localizes to cytoplasmic granules known as "centriolar satellites" that are partly enriched around the centrosome. We inhibited PCM-1 function using a variety of approaches: microinjection of antibodies into cultured cells, overexpression of a PCM-1 deletion mutant, and specific depletion of PCM-1 by siRNA. All approaches led to reduced targeting of centrin, pericentrin, and ninein to the centrosome. Similar effects were seen upon inhibition of dynactin by dynamitin, and after prolonged treatment of cells with the microtubule inhibitor nocodazole. Inhibition or depletion of PCM-1 function further disrupted the radial organization of microtubules without affecting microtubule nucleation. Loss of microtubule organization was also observed after centrin or ninein depletion. Our data suggest that PCM-1-containing centriolar satellites are involved in the microtubule- and dynactin-dependent recruitment of proteins to the centrosome, of which centrin and ninein are required for interphase microtubule organization.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular , Centríolos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus , Animais , Anticorpos/farmacologia , Antígenos/metabolismo , Autoantígenos/genética , Autoantígenos/imunologia , Células CHO , Células COS , Galinhas , Cricetinae , Proteínas do Citoesqueleto , Complexo Dinactina , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Expressão Gênica/fisiologia , Células HeLa , Humanos , Camundongos , Microinjeções , Proteínas Associadas aos Microtúbulos/metabolismo , Mioblastos/citologia , Proteínas Nucleares , Osteossarcoma , Interferência de RNA/fisiologia , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Xenopus
19.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923192

RESUMO

In mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier. We propose two underlying mechanisms: first, ninein contributes to spindle orientation during the division of progenitor cells, whereas its absence leads to misoriented cell divisions, altering the pool of progenitor cells. Second, ninein is required for the cortical organization of microtubules in differentiating keratinocytes, and for the cortical re-localization of microtubule-organizing proteins, and may thus affect any mechanisms that depend on localized microtubule-dependent transport.


Assuntos
Centrossomo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Epiderme/crescimento & desenvolvimento , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Corpos Polares do Fuso/metabolismo , Animais , Feminino , Proteínas Filagrinas , Inativação Gênica , Células HeLa , Humanos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitose/fisiologia , Fenótipo , Gravidez
20.
Mol Biol Cell ; 16(4): 1711-24, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15659651

RESUMO

Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle-regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adult cells. We find that Nek2 exists in small, highly dynamic cytoplasmic particles that move to and from the centrosome. Many of these particles align along microtubules and a motif was identified in the Nek2 C-terminal noncatalytic domain that allows both microtubule binding and centrosome localization. FRAP experiments reveal that 70% of centrosomal Nek2 is rapidly turned over (t(1/2) approximately 3 s). Microtubules facilitate Nek2 trafficking to the centrosome but only over long distances. Cytoplasmic Nek2 particles colocalize in part with PCM-1 containing centriolar satellites and depletion of PCM-1 interferes with centrosomal recruitment of Nek2 and its substrate C-Nap1. Finally, we show that proteasomal degradation is necessary to allow rapid recruitment of new Nek2 molecules to the centrosome. Together, these data highlight multiple processes involved in regulating the abundance of Nek2 kinase at the centrosome including microtubule binding, the centriolar satellite component PCM-1, and localized protein degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Autoantígenos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Cricetinae , Humanos , Dados de Sequência Molecular , Quinases Relacionadas a NIMA , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA