Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 403(10435): 1494-1503, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490231

RESUMO

Lung development starts in utero and continues during childhood through to adolescence, reaching its peak in early adulthood. This growth is followed by gradual decline due to physiological lung ageing. Lung-function development can be altered by several host and environmental factors during the life course. As a result, a range of lung-function trajectories exist in the population. Below average trajectories are associated with respiratory, cardiovascular, metabolic, and mental health comorbidities, as well as with premature death. This Review presents progressive research into lung-function trajectories and assists the implementation of this knowledge in clinical practice as an innovative approach to detect poor lung health early, monitor respiratory disease progression, and promote lung health. Specifically, we propose that, similar to paediatric height and weight charts used globally to monitor children's growth, lung-function charts could be used for both children and adults to monitor lung health status across the life course. To achieve this proposal, we introduce our free online Lung Function Tracker tool. Finally, we discuss challenges and opportunities for effective implementation of the trajectory concept at population level and outline an agenda for crucial research needed to support such implementation.


Assuntos
Pulmão , Doenças Respiratórias , Adulto , Adolescente , Criança , Humanos , Saúde Mental , Nível de Saúde
2.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822631

RESUMO

BACKGROUND: The beneficial effect of improving air quality on lung function development remains understudied. We assessed associations of changes in ambient air pollution levels with lung function growth from childhood until young adulthood in a Swedish cohort study. METHODS: In the prospective birth cohort BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology (in Swedish)), spirometry was conducted at the 8-year (2002-2004), 16-year (2011-2013) and 24-year (2016-2019) follow-ups. Participants with spirometry data at 8 years and at least one other measurement in subsequent follow-ups were included (1509 participants with 3837 spirometry measurements). Ambient air pollution levels (particulate matter with diameter ≤2.5 µm (PM2.5), particulate matter with diameter ≤10 µm (PM10), black carbon (BC) and nitrogen oxides (NO x )) at residential addresses were estimated using dispersion modelling. Linear mixed effect models were used to estimate associations between air pollution exposure change and lung function development. RESULTS: Overall, air pollution levels decreased progressively during the study period. For example, the median (interquartile range (IQR)) level of PM2.5 decreased from 8.24 (0.92) µg·m-3 during 2002-2004 to 5.21 (0.67) µg·m-3 during 2016-2019. At the individual level, for each IQR reduction of PM2.5 the lung function growth rate increased by 4.63 (95% CI 1.64-7.61) mL per year (p<0.001) for forced expiratory volume in 1 s and 9.38 (95% CI 4.76-14.00) mL per year (p<0.001) for forced vital capacity. Similar associations were also observed for reductions of BC and NO x . Associations persisted after adjustment for potential confounders and were not modified by asthma, allergic sensitisation, overweight, early-life air pollution exposure or dietary antioxidant intake. CONCLUSIONS: Long-term reduction of air pollution is associated with positive lung function development from childhood to young adulthood.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos de Coortes , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Pulmão , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
3.
Scand J Public Health ; 49(7): 707-712, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34148454

RESUMO

AIM: We aimed to assess prevalence of IgG antibodies to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and factors associated with seropositivity in a large cohort of healthcare workers (HCWs). METHODS: From 11 May until 11 June 2020, 3981 HCWs at a large Swedish emergency care hospital provided serum samples and questionnaire data. Presence of IgG antibodies to SARS-CoV-2 was measured as an indicator of SARS-CoV-2 exposure. RESULTS: The total seroprevalence was 18% and increased during the study period. Among the seropositive HCWs, 11% had been entirely asymptomatic. Participants who worked with COVID-19 patients had higher odds for seropositivity: adjusted odds ratio 1.96 (95% confidence intervals 1.59-2.42). HCWs from three of the departments managing COVID-19 patients had significantly higher seroprevalences, whereas the prevalence among HCWs from the intensive care unit (also managing COVID-19 patients) was significantly lower. CONCLUSIONS: HCWs in contact with SARS-CoV-2 infected patients had a variable, but on average higher, likelihood for SARS-CoV-2 infections.


Assuntos
COVID-19 , SARS-CoV-2 , Pessoal de Saúde , Hospitais , Humanos , Recursos Humanos em Hospital , Estudos Soroepidemiológicos
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466918

RESUMO

DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Imunoglobulina E/sangue , Leucócitos Mononucleares/metabolismo , Mães/estatística & dados numéricos , Adulto , Alérgenos/imunologia , Células Cultivadas , Pré-Escolar , Estudos de Coortes , Feminino , Sangue Fetal/imunologia , Predisposição Genética para Doença/genética , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Masculino , Gravidez
5.
Respir Res ; 21(1): 80, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264874

RESUMO

BACKGROUND: Adolescence is a significant period for the gender-dependent development of lung function. Prior studies have shown that DNA methylation (DNA-M) is associated with lung function and DNA-M at some cytosine-phosphate-guanine dinucleotide sites (CpGs) changes over time. This study examined whether changes of DNA-M at lung-function-related CpGs are associated with changes in lung function during adolescence for each gender, and if so, the biological significance of the detected CpGs. METHODS: Genome-scale DNA-M was measured in peripheral blood samples at ages 10 (n = 330) and 18 years (n = 476) from the Isle of Wight (IOW) birth cohort in United Kingdom, using Illumina Infinium arrays (450 K and EPIC). Spirometry was conducted at both ages. A training and testing method was used to screen 402,714 CpGs for their potential associations with lung function. Linear regressions were applied to assess the association of changes in lung function with changes of DNA-M at those CpGs potentially related to lung function. Adolescence-related and personal and family-related confounders were included in the model. The analyses were stratified by gender. Multiple testing was adjusted by controlling false discovery rate of 0.05. Findings were further examined in two independent birth cohorts, the Avon Longitudinal Study of Children and Parents (ALSPAC) and the Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) cohort. Pathway analyses were performed on genes to which the identified CpGs were mapped. RESULTS: For females, 42 CpGs showed statistically significant associations with change in FEV1/FVC, but none for change in FEV1 or FVC. No CpGs were identified for males. In replication analyses, 16 and 21 of the 42 CpGs showed the same direction of associations among the females in the ALSPAC and BAMSE cohorts, respectively, with 11 CpGs overlapping across all the three cohorts. Through pathway analyses, significant biological processes were identified that have previously been related to lung function development. CONCLUSIONS: The detected 11 CpGs in all three cohorts have the potential to serve as the candidate epigenetic markers for changes in lung function during adolescence in females.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Pulmão/fisiologia , Espirometria/tendências , Adolescente , Criança , Estudos de Coortes , Ilhas de CpG/fisiologia , Feminino , Humanos , Estudos Longitudinais , Pulmão/crescimento & desenvolvimento , Masculino , Espirometria/métodos , Reino Unido/epidemiologia
6.
Allergy ; 74(6): 1166-1175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30762239

RESUMO

BACKGROUND: The presence of allergic sensitization has a major influence on the development and course of common childhood conditions such as asthma and rhinitis. The etiology of allergic sensitization is poorly understood, and its underlying biological mechanisms are not well established. Several studies showed that DNA methylation (DNAm) at some CpGs is associated with allergic sensitization. However, no studies have focused on the critical adolescence period. METHODS: We assessed the association of pre- and postadolescence genome-wide DNAm with allergic sensitization against indoor, outdoor and food allergens, using linear mixed models. We hypothesized that DNAm is associated with sensitization in general, and with poly-sensitization status, and these associations are age- and gender-specific. We tested these hypotheses in the IoW cohort (n = 376) and examined the findings in the BAMSE cohort (n = 267). RESULTS: Via linear mixed models, we identified 35 CpGs in IoW associated with allergic sensitization (at false discovery rate of 0.05), of which 33 were available in BAMSE and replicated with respect to the direction of associations with allergic sensitization. At the 35 CpGs except for cg19210306 on C13orf27, a reduction in methylation among atopic subjects was observed, most notably for cg21220721 and cg11699125 (ACOT7). DNAm at cg10159529 was strongly correlated with expression of IL5RA in peripheral blood (P-value = 6.76 × 10-20 ). Three CpGs (cg14121142, cg23842695, and cg26496795) were identified in IoW with age-specific association between DNAm and allergic sensitization. CONCLUSION: In adolescence, the status of allergic sensitization was associated with DNAm differentiation and at some CpGs the association is likely to be age-specific.


Assuntos
Alérgenos/imunologia , Ilhas de CpG/genética , Metilação de DNA/genética , Genoma Humano/genética , Hipersensibilidade/genética , Adolescente , Alérgenos/administração & dosagem , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Hipersensibilidade/sangue , Imunoglobulina E/sangue , Lactente , Estudos Longitudinais , Masculino , Testes Cutâneos
11.
BMC Bioinformatics ; 15: 308, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25236784

RESUMO

BACKGROUND: In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis. RESULTS: We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership. CONCLUSIONS: The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.


Assuntos
Genômica/métodos , Glioblastoma/genética , Mutação , Neoplasias Ovarianas/genética , Algoritmos , Feminino , Humanos , Curva ROC , Software
12.
Paediatr Respir Rev ; 15(4): 348-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25151612

RESUMO

Epigenetic mechanisms, defined as changes in phenotype or gene expression caused by mechanisms other than changes in the underlying DNA sequence, have been proposed to constitute a link between genetic and environmental factors that affect complex diseases. Recent studies show that DNA methylation, one of the key epigenetic mechanisms, is altered in children exposed to air pollutants and environmental tobacco smoke early in life. Several candidate gene studies on epigenetics have been published to date, but it is only recently that global methylation analyses have been performed for respiratory disorders such as asthma and chronic obstructive pulmonary disease. However, large-scale studies with adequate power are yet to be presented in children, and implications for clinical use remain to be evaluated. In this review, we summarize the recent advances in epigenetics and respiratory disorders in children, with a main focus on methodological challenges and analyses related to phenotype and exposure using global methylation approaches.


Assuntos
Epigênese Genética , Doenças Respiratórias/genética , Poluentes Atmosféricos/toxicidade , Criança , Metilação de DNA , Expressão Gênica , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Fenótipo , Fatores de Risco
13.
ERJ Open Res ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259815

RESUMO

Background: Moderate-to-late preterm birth (32 to <37 weeks of gestation) has been associated with impaired lung function in adolescence, but data in adulthood and physiological phenotyping beyond spirometry are scarce. We aimed to investigate lung function development from adolescence into young adulthood and to provide physiological phenotyping in individuals born moderate-to-late preterm. Methods: Lung function data from individuals born moderate-to-late preterm (n=110) and term (37 to <42 weeks of gestation, n=1895) in the Swedish birth cohort BAMSE were used for analysis and included dynamic spirometry, fractional exhaled nitric oxide and multiple breath nitrogen wash-out. Data from 16- and 24-year follow-ups were analysed using regression models stratified on sex and adjusted for smoking. Data-driven latent class analysis was used to phenotype moderate-to-late preterm individuals at 24 years, and groups were related to background factors. Results: Males born moderate-to-late preterm had lower forced expiratory volume in 1 s (FEV1) at 24 years of age (-0.28 z-score, p=0.045), compared to males born term. In females, no difference was seen at 24 years, partly explained by a significant catch up in FEV1 between 16 and 24 years (0.18 z-score, p=0.01). Lung function phenotypes described as "asthma-like", "dysanapsis-like" and "preterm reference" were identified within the preterm group. Maternal overweight in early pregnancy was associated with "asthma-like" group membership (OR 3.59, p=0.02). Conclusion: Our results show impaired FEV1 at peak lung function in males born moderate-to-late preterm, while females born moderate-to-late preterm had significant catch up between the ages of 16 and 24 years. Several phenotypes of lung function impairment exist in individuals born moderate-to-late preterm.

14.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
15.
Clin Epigenetics ; 14(1): 114, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114581

RESUMO

BACKGROUND: DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses. METHODS: Using prospectively collected data from the German LISA birth cohort from two time windows (6-10 years: N = 234; 10-15 years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E > 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort. RESULTS: Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p < 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two). None of these CpGs could be replicated in BAMSE. The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7-49.6%), suggesting changes in DNAm occurred post-sensitization. CONCLUSION: The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development.


Assuntos
Metilação de DNA , Hipersensibilidade , Biomarcadores , Estudos Transversais , Feminino , Humanos , Hipersensibilidade/genética , Imunoglobulina E , Gravidez
16.
Curr Opin Allergy Clin Immunol ; 21(2): 175-181, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33620884

RESUMO

PURPOSE OF REVIEW: Asthma is a common disease worldwide, however, its pathogenesis has not been fully elucidated. Emerging evidence suggests that epigenetic modifications may play a role in the development and natural history of asthma. The aim of this review is to highlight recent progress in research on epigenetic mechanisms in asthma. RECENT FINDINGS: Over the past years, epigenetic studies, in particular DNA methylation studies, have added to the growing body of evidence supporting a link between epigenetic regulation of gene expression and asthma. Recent studies demonstrate that epigenetic mechanisms also play a role in asthma remission. Although most existing studies in this field have been conducted on blood cells, recent evidence suggests that epigenetic signatures are also crucial for the regulation of airway epithelial cells. Studies conducted on nasal epithelium revealed highly replicable epigenetic patterns that could be used for diagnostic purposes. SUMMARY: Further research is needed to explore the diagnostic and therapeutic potential of epigenetic modifications in asthma. Multiomics studies on asthma will become increasingly important for a better understanding of etiology, heterogeneity, and severity of asthma, as well as establishing molecular biomarkers that could be combined with clinical information to improve the management of asthma patients.


Assuntos
Asma , Histonas , Asma/genética , Metilação de DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
17.
Environ Int ; 146: 106248, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212358

RESUMO

Air pollution has been associated with adverse health effects across the life-course. Although underlying mechanisms are unclear, several studies suggested pollutant-induced changes in transcriptomic profiles. In this meta-analysis of transcriptome-wide association studies of 656 children and adolescents from three European cohorts participating in the MeDALL Consortium, we found two differentially expressed transcript clusters (FDR p < 0.05) associated with exposure to particulate matter < 2.5 µm in diameter (PM2.5) at birth, one of them mapping to the MIR1296 gene. Further, by integrating gene expression with DNA methylation using Functional Epigenetic Modules algorithms, we identified 9 and 6 modules in relation to PM2.5 exposure at birth and at current address, respectively (including NR1I2, MAPK6, TAF8 and SCARA3). In conclusion, PM2.5 exposure at birth was linked to differential gene expression in children and adolescents. Importantly, we identified several significant interactome hotspots of gene modules of relevance for complex diseases in relation to PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Metilação de DNA , Exposição Ambiental/análise , Epigenômica , Humanos , Material Particulado/análise , Material Particulado/toxicidade
18.
Genome Med ; 12(1): 25, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32114984

RESUMO

BACKGROUND: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. METHODS: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. RESULTS: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. CONCLUSIONS: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.


Assuntos
Metilação de DNA , Epigenoma , Desenvolvimento Fetal/genética , Nascimento Prematuro/genética , Adolescente , Criança , Pré-Escolar , DNA/sangue , Feminino , Loci Gênicos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
19.
Epigenet Insights ; 12: 2516865719867090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453433

RESUMO

There is emerging evidence on DNA methylation (DNAm) variability over time; however, little is known about dynamics of DNAm patterns during pregnancy. We performed an epigenome-wide longitudinal DNAm study of a well-characterized sample of young women from the Swedish Born into Life study, with repeated blood sampling before, during and after pregnancy (n = 21), using the Illumina Infinium MethylationEPIC array. We conducted a replication in the Isle of Wight third-generation birth cohort (n = 27), using the Infinium HumanMethylation450k BeadChip. We identified 196 CpG sites displaying intra-individual longitudinal change in DNAm with a false discovery rate (FDR) P < .05. Most of these (91%) showed a decrease in average methylation levels over the studied period. We observed several genes represented by ⩾3 differentially methylated CpGs: HOXB3, AVP, LOC100996291, and MicroRNA 10a. Of 36 CpGs available in the replication cohort, 17 were replicated, all but 2 with the same direction of association (replication P < .05). Biological pathway analysis demonstrated that FDR-significant CpGs belong to genes overrepresented in metabolism-related pathways, such as adipose tissue development, regulation of insulin receptor signaling, and mammary gland fat development. These results contribute to a better understanding of the biological mechanisms underlying important physiological alterations and adaptations for pregnancy and lactation.

20.
Environ Health Perspect ; 127(5): 57012, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Epigenoma , Sangue Fetal/química , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Adolescente , Poluição do Ar/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA