Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(1): 157-169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36453059

RESUMO

Site fidelity-the tendency to return to previously visited locations-is widespread across taxa. Returns may be driven by several mechanisms, including memory, habitat selection, or chance; however, pattern-based definitions group different generating mechanisms under the same label of 'site fidelity', often assuming memory as the main driver. We propose an operational definition of site fidelity as patterns of return that deviate from a null expectation derived from a memory-free movement model. First, using agent-based simulations, we show that without memory, intrinsic movement characteristics and extrinsic landscape characteristics are key determinants of return patterns and that even random movements may generate substantial probabilities of return. Second, we illustrate how to implement our framework empirically to establish ecologically meaningful, system-specific null expectations for site fidelity. Our approach provides a conceptual and operational framework to test hypotheses on site fidelity across systems and scales.


Assuntos
Ecossistema , Motivação , Animais
2.
J Anim Ecol ; 92(10): 1954-1965, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37462330

RESUMO

Animal behaviour is shaped by the ability to identify risks and profitably balance the levels of risks encountered with the payoffs experienced. Anthropogenic disturbances like roads generate novel risks and opportunities that wildlife must accurately perceive and respond to. Basic concepts in predator-prey ecology are often used to understand responses of animals to roads (e.g. increased vigilance, selection for cover in their vicinity). However, prey often display complex behaviours such as modulating space use given varying risks and rewards, and it is unclear if such dynamic balancing is used by animals in the context of road crossings. We tested whether animals dynamically balance risks and rewards relative to roads using extensive field-based and GPS collar data from elk in Yoho National Park (British Columbia, Canada), where a major highway completely bisects their range during most of the year. We analysed elk behaviour by combining hidden Markov movement models with a step-selection function framework. Rewards were indexed by a dynamic map of available forage biomass, and risks were indexed by road crossings and traffic volumes. We found that elk generally selected intermediate and high forage biomass, and avoided crossing the road. Most of the time, elk modulated their behaviour given varying risks and rewards. When crossing the highway compared with not crossing, elk selected for greater forage biomass and this selection was stronger as the number of highway crossings increased. However, with traffic volume, elk only balanced foraging rewards when they crossed a single time during a travel sequence. Using a road ecology system, we empirically tested an important component of predator-prey ecology-the ability to dynamically modulate behaviour in response to varying levels of risks and rewards. Such a test articulates how decision-making processes that consider the spatiotemporal variation in risks and rewards allow animals to successfully and profitably navigate busy roads. Applying well-developed concepts in predator-prey theory helps understand how animals respond to anthropogenic disturbances and anticipate the adaptive capacity for individuals and populations to adjust to rapidly changing environments.


Le comportement animal est influencé par la capacité des animaux à identifier et minimiser les risques rencontrés, tout en maximisant les gains obtenus. Les perturbations anthropiques, telles que les routes, engendrent de nouveaux risques et opportunités pour la faune. Les concepts de l'écologie prédateur-proie sont fréquemment utilisés pour comprendre les réactions des animaux aux routes (e.g. vigilance accrue, choix de couvert à proximité des routes). Cependant, même s'il est connu que les proies ajustent fréquemment leur utilisation de l'espace de façon à minimiser les risques et maximiser les récompenses, il n'est pas clair si une telle optimisation est utilisée par les animaux lorsqu'ils traversent des routes. Ici, nous avons évalué comment les animaux ajustent leur sélection d'habitat par rapport aux routes en fonction des risques et des récompenses disponibles. Nous avons examiné cette question chez les wapitis du parc national Yoho (Colombie-Britannique, Canada), où une autoroute majeure divise complètement leur domaine vital pendant une majeure partie de l'année. À l'aide d'une analyse de sélection d'habitat à fine échelle, nous avons testé si les wapitis optimisent les risques liés aux traversées d'autoroute et les récompenses alimentaires obtenues lorsqu'ils se déplacent entre des zones d'alimentation. Les récompenses ont été estimées à l'aide d'une carte dynamique de la biomasse végétale disponible pour les wapitis, et les risques ont été estimés en fonction des traversées de route et du trafic automobile rencontré. Nos résultats indiquent que les wapitis sélectionnaient généralement des zones d'alimentation avec une biomasse intermédiaire à élevée, et évitaient de traverser l'autoroute. La plupart du temps, les wapitis ajustaient leur sélection d'habitat en fonction des risques et des récompenses. Les wapitis sélectionnaient des zones d'alimentation avec une biomasse plus élevée lorsqu'ils traversaient l'autoroute, comparé à lorsqu'ils ne traversaient pas. Ils optimisaient également la biomasse végétale obtenue en fonction du nombre de traversées de l'autoroute effectuées durant une séquence de déplacement. Cependant, les wapitis optimisaient uniquement les récompenses alimentaires avec le trafic automobile durant les séquences de déplacement avec une seule traversée. Nous avons testé empiriquement un élément essentiel de l'écologie prédateur-proie, soit la capacité d'ajuster de façon dynamique un comportement en réponse à des niveaux variables de risques et de récompenses, dans le contexte de l'écologie routière. Notre étude permet d'illustrer comment les processus décisionnels considérant à la fois les risques, les récompenses et leur variation spatiotemporelle, permettent aux animaux de naviguer de façon optimale les routes très fréquentées. L'utilisation de concepts bien établis de l'écologie prédateur-proie aide à comprendre comment les animaux réagissent aux perturbations anthropiques, et contribue à anticiper la capacité d'adaptation des individus et des populations face à des environnements en transformation rapide.


Assuntos
Ecossistema , Herbivoria , Humanos , Animais , Ecologia , Movimento , Colúmbia Britânica , Comportamento Predatório/fisiologia
3.
Ecol Appl ; 32(7): e2652, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543078

RESUMO

While migrating, animals make directionally persistent movements and may only respond to human-induced rapid environmental change (HIREC), such as climate and land-use change, once a threshold of HIREC is surpassed. In contrast, animals on other seasonal ranges (e.g., winter range) make more localized and tortuous movements while foraging and may have the flexibility to adjust the location of their range and the intensity of use within it to minimize interactions with HIREC. Because of these seasonal differences in movement, animals on seasonal ranges should avoid areas that contain any level of HIREC, however, during migration, animals should use areas that contain low levels of HIREC, avoiding it only once a threshold of HIREC has been surpassed. We tested this hypothesis using a decade of GPS collar data collected from migratory mule deer (Odocoileus hemionus; n = 56 migration, 143 winter) and pronghorn (Antilocapra americana; n = 70 migration, 89 winter) that winter on and migrate through a natural gas field in western Wyoming. Using surface disturbance caused by well pads and roads as an index of HIREC, we evaluated behavioral responses across three spatial scales during winter and migration seasons. During migration, both species tolerated low levels of disturbance. Once a disturbance threshold was surpassed, however, they avoided HIREC. For mule deer, thresholds were consistently ~3%, whereas thresholds for pronghorn ranged from 1% to 9.25% surface disturbance. In contrast to migration, both species generally avoided all levels of HIREC while on winter range. Our study suggests that animal responses to HIREC are mediated by season-specific movement patterns. Our results provide further evidence of ungulates avoiding human disturbance on winter range and reveal disturbance thresholds that trigger mule deer and pronghorn responses during migration: information that managers can use to maintain the ecological function of migration routes and winter ranges.


Assuntos
Cervos , Animais , Cervos/fisiologia , Ecossistema , Equidae , Humanos , Gás Natural , Ruminantes , Estações do Ano
4.
Proc Natl Acad Sci U S A ; 116(51): 25707-25713, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31754040

RESUMO

Newly emerging plants provide the best forage for herbivores. To exploit this fleeting resource, migrating herbivores align their movements to surf the wave of spring green-up. With new technology to track migrating animals, the Green Wave Hypothesis has steadily gained empirical support across a diversity of migratory taxa. This hypothesis assumes the green wave is controlled by variation in climate, weather, and topography, and its progression dictates the timing, pace, and extent of migrations. However, aggregate grazers that are also capable of engineering grassland ecosystems make some of the world's most impressive migrations, and it is unclear how the green wave determines their movements. Here we show that Yellowstone's bison (Bison bison) do not choreograph their migratory movements to the wave of spring green-up. Instead, bison modify the green wave as they migrate and graze. While most bison surfed during early spring, they eventually slowed and let the green wave pass them by. However, small-scale experiments indicated that feedback from grazing sustained forage quality. Most importantly, a 6-fold decadal shift in bison density revealed that intense grazing caused grasslands to green up faster, more intensely, and for a longer duration. Our finding broadens our understanding of the ways in which animal movements underpin the foraging benefit of migration. The widely accepted Green Wave Hypothesis needs to be revised to include large aggregate grazers that not only move to find forage, but also engineer plant phenology through grazing, thereby shaping their own migratory movements.


Assuntos
Migração Animal/fisiologia , Bison/fisiologia , Comportamento Alimentar/fisiologia , Herbivoria/fisiologia , Plantas , Animais , Clima , Sistemas de Informação Geográfica , Modelos Biológicos , Montana , Estações do Ano , Wyoming
5.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311513

RESUMO

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho Corporal
6.
J Anim Ecol ; 90(5): 1264-1275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630313

RESUMO

Wildlife migrations provide important ecosystem services, but they are declining. Within the Greater Yellowstone Ecosystem (GYE), some elk Cervus canadensis herds are losing migratory tendencies, which may increase spatiotemporal overlap between elk and livestock (domestic bison Bison bison and cattle Bos taurus), potentially exacerbating pathogen transmission risk. We combined disease, movement, demographic and environmental data from eight elk herds in the GYE to examine the differential risk of brucellosis transmission (through aborted foetuses) from migrant and resident elk to livestock. For both migrants and residents, we found that transmission risk from elk to livestock occurred almost exclusively on private ranchlands as opposed to state or federal grazing allotments. Weather variability affected the estimated distribution of spillover risk from migrant elk to livestock, with a 7%-12% increase in migrant abortions on private ranchlands during years with heavier snowfall. In contrast, weather variability did not affect spillover risk from resident elk. Migrant elk were responsible for the majority (68%) of disease spillover risk to livestock because they occurred in greater numbers than resident elk. On a per-capita basis, however, our analyses suggested that resident elk disproportionately contributed to spillover risk. In five of seven herds, we estimated that the per-capita spillover risk was greater from residents than from migrants. Averaged across herds, an individual resident elk was 23% more likely than an individual migrant elk to abort on private ranchlands. Our results demonstrate links between migration behaviour, spillover risk and environmental variability, and highlight the utility of integrating models of pathogen transmission and host movement to generate new insights about the role of migration in disease spillover risk. Furthermore, they add to the accumulating body of evidence across taxa that suggests that migrants and residents should be considered separately during investigations of wildlife disease ecology. Finally, our findings have applied implications for elk and brucellosis in the GYE. They suggest that managers should prioritize actions that maintain spatial separation of elk and livestock on private ranchlands during years when snowpack persists into the risk period.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Animais , Animais Selvagens , Brucella abortus , Bovinos , Ecossistema
7.
J Anim Ecol ; 90(4): 955-966, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481254

RESUMO

While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.


Assuntos
Cervos , Rena , África , Animais , Ecossistema , América do Norte
8.
Glob Chang Biol ; 26(8): 4215-4225, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524724

RESUMO

To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green-up that progresses across the landscape (termed "green-wave surfing"). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green-up by approximately twofold (2.5 weeks) and resulted in less sequential green-up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green-up duration irrespective of drought intensity). We found no evidence of drought-buffered routes. Instead, routes with the longest green-up in non-drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought-altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green-up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.


Assuntos
Migração Animal , Cervos , Ecossistema , Animais , Secas , Estações do Ano , Wyoming
9.
Ecol Appl ; 30(6): e02129, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32223053

RESUMO

Wildlife diseases pose a substantial threat to the provisioning of ecosystem services. We use a novel modeling approach to study the potential loss of these services through the imminent introduction of chronic wasting disease (CWD) to elk populations in the Greater Yellowstone Ecosystem (GYE). A specific concern is that concentrating elk at feedgrounds may exacerbate the spread of CWD, whereas eliminating feedgrounds may increase the number of elk on private ranchlands and the transmission of a second disease, brucellosis, from elk to cattle. To evaluate the consequences of management strategies given the threat of two concurrent wildlife diseases, we develop a spatiotemporal bioeconomic model. GPS data from elk and landscape attributes are used to predict migratory behavior and population densities with and without supplementary feeding. We use a 4,800 km2 area around Pinedale, Wyoming containing four existing feedgrounds as a case study. For this area, we simulate welfare estimates under a variety of management strategies. Our results indicate that continuing to feed elk could result in substantial welfare losses for the case-study region. Therefore, to maximize the present value of economic net benefits generated by the local elk population upon CWD's arrival in the region, wildlife managers may wish to consider discontinuing elk feedgrounds while simultaneously developing new methods to mitigate the financial impact to ranchers of possible brucellosis transmission to livestock. More generally, our methods can be used to weigh the costs and benefits of human-wildlife interactions in the presence of multiple disease risks.


Assuntos
Brucelose , Cervos , Doença de Emaciação Crônica , Animais , Brucelose/epidemiologia , Brucelose/prevenção & controle , Brucelose/veterinária , Bovinos , Ecossistema , Doença de Emaciação Crônica/epidemiologia , Wyoming/epidemiologia
10.
Ecol Lett ; 22(11): 1797-1805, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31412429

RESUMO

From fine-scale foraging to broad-scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long-distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2-28 times more strongly than tracking spring green-up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Memória Espacial
11.
Glob Chang Biol ; 25(7): 2368-2381, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30908766

RESUMO

Migration is an effective behavioral strategy for prolonging access to seasonal resources and may be a resilient strategy for ungulates experiencing changing climatic conditions. In the Greater Yellowstone Ecosystem (GYE), elk are the primary ungulate, with approximately 20,000 individuals migrating to exploit seasonal gradients in forage while also avoiding energetically costly snow conditions. How climate-induced changes in plant phenology and snow accumulation are influencing elk migration timing is unknown. We present the most complete record of elk migration across the GYE, spanning 9 herds and 414 individuals from 2001 to 2017, to evaluate the drivers of migration timing and test for temporal shifts. The timing of elk departure from winter range involved a trade-off between current and anticipated forage conditions, while snow melt governed summer range arrival date. Timing of elk departure from summer range and arrival on winter range were both influenced by snow accumulation and exposure to hunting. At the GYE scale, spring and fall migration timing changed through time, most notably with winter range arrival dates becoming almost 50 days later since 2001. Predicted herd-level changes in migration timing largely agreed with observed GYE-wide changes-except for predicted winter range arrival dates which did not reflect the magnitude of change detected in the elk telemetry data. Snow melt, snow accumulation, and spring green-up dates all changed through time, with different herds experiencing different rates and directions of change. We conclude that elk migration is plastic, is a direct response to environmental cues, and that these environmental cues are not changing in a consistent manner across the GYE. The impacts of changing elk migration timing on predator-prey dynamics, carnivore-livestock conflict, disease ecology, and harvest management across the GYE are likely to be significant and complex.


Assuntos
Cervos , Ecossistema , Migração Animal , Animais , Mudança Climática , Estações do Ano , Neve
12.
J Anim Ecol ; 88(3): 450-460, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449042

RESUMO

The migratory movements of wild animals can promote abundance and support ecosystem functioning. For large herbivores, mounting evidence suggests that migratory behaviour is an individually variable trait, where individuals can easily switch between migrant and resident tactics. The degree of migratory plasticity, including whether and where to migrate, has important implications for the ecology and conservation of large herbivores in a changing world. Mule deer (Odocoileus hemionus) are an iconic species of western North America, but are notably absent from the body of literature that suggests large herbivore migrations are highly plastic. We evaluated plasticity of migration in female mule deer using longitudinal GPS data collected from 312 individuals across nine populations in the western United States, including 882 animal-years (801 migrants and 81 residents). We followed both resident and migratory mule deer through time to determine whether individual animals switched migratory behaviours (i.e., whether to migrate) from migratory to residency or vice versa. Additionally, we examined the fidelity of individuals to their migration routes (i.e., where to migrate) to determine whether they used the same routes year after year. We also evaluated whether age and reproductive status affected propensity to migrate or fidelity to migratory routes. Our results indicate that mule deer, unlike other large herbivores, have little or no plasticity in terms of whether or where they migrate. Resident deer remained residents, and migrant deer remained migrants, regardless of age, reproductive status or number of years monitored. Further, migratory individuals showed strong fidelity (>80%) to their migration routes year after year. Our study clearly shows that migration plasticity is not ubiquitous among large herbivores. Because of their rigid migratory behaviour, mule deer may not adapt to changing environmental conditions as readily as large herbivores with more plastic migratory behaviour (e.g., elk). The fixed migratory behaviours of mule deer make clear that conservation efforts aimed at traditional seasonal ranges and migration routes are warranted for sustaining this iconic species that continues to decline across its range.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Feminino , América do Norte , Estações do Ano
13.
J Anim Ecol ; 88(5): 780-792, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825191

RESUMO

Crop raiding by wildlife poses major threats to both wildlife conservation and human well-being in agroecosystems worldwide. These threats are particularly acute in many parts of Africa, where crop raiders include globally threatened megafauna such as elephants, and where smallholder agriculture is a primary source of human livelihood. One framework for understanding herbivore feeding behaviour, the forage-maturation hypothesis, predicts that herbivores should align their movements with intermediate forage biomass (i.e., peak green-up); this phenomenon is known as "surfing the green wave." Crop-raiding elephants, however, often consume not just foliage, but also fruits and tubers (e.g., maize and potatoes), which generally mature after seasonal peaks in photosynthetic activity. Thus, although elephants have been reported to surf the green wave in natural habitats, they may utilize a different strategy in cultivated landscapes by selecting crops that are "browning down." We sought to understand the factors that underpin movement of elephants into agricultural landscapes. In Mozambique's Gorongosa National Park, we used movement data from GPS-collared elephants, together with precipitation records, remotely sensed estimates of landscape greenness (NDVI), DNA-based diet analysis, measurements of plant nutritional quality and survey-based metrics of crop availability to understand spatiotemporal variation in elephant crop-raiding behaviour. Elephants tracked peak NDVI while foraging inside the Park. During the dry season, however, when NDVI within the Park declined and availability of mature crops was high, crop raiding increased dramatically, and elephants consistently selected crop plants that were browning down while foraging in cultivated landscapes. Crops contained significantly higher digestible energy than wild food plants, but comparable (and sometimes lower) levels of digestible protein, suggesting that this foraging strategy maximized energy rather than protein intake. Our study is the first to combine GPS tracking data with high-resolution diet analysis and community-based reporting of crop availability to reveal fine-scale plasticity in foraging behaviour of elephants at the human-wildlife interface. Our results extend the forage-maturation hypothesis by showing that elephants surf waves of plant brown-down in cultivated landscapes. These findings can aid efforts to reduce human-elephant conflict by enabling wildlife managers to prioritize mitigation actions in time and space with limited resources.


Assuntos
Elefantes , África , Animais , Conservação dos Recursos Naturais , Produtos Agrícolas , Ecossistema , Humanos
14.
Environ Manage ; 64(5): 553-563, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578626

RESUMO

Unfenced plains bison are rare and only occur in a small number of locations throughout Canada and the United States. We examined management guidelines for maintenance of genetic health and population persistence for a small and isolated population of plains bison that occupy the interface between a protected national park and private agricultural lands. To address genetic health concerns, we measured genetic diversity relative to other populations and assessed the potential effects of genetic augmentation. We then used individual-based population viability analyses (PVA) to determine the minimum abundance likely to prevent genetic diversity declines. We assessed this minimum relative to a proposed maximum social carrying capacity related to bison use of human agricultural lands. We also used the PVA to assess the probability of population persistence given the limiting factors of predation, hunting, and disease. Our results indicate that genetic augmentation will likely be required to achieve genetic diversity similar to that of other plains bison populations. We also found that a minimum population of 420 bison yields low probability of additional genetic loss while staying within society-based maxima. Population estimates based on aerial surveys indicated that the population has been below this minimum since 2007. Our PVA simulations indicate that current hunting practices will result in undesirable levels of population extinction risk and further declines in genetic variability. Our study demonstrates that PVA can be used to evaluate potential management scenarios as they relate to long-term genetic conservation and population persistence for rare species.


Assuntos
Bison , Animais , Canadá , Conservação dos Recursos Naturais , Variação Genética , Parques Recreativos
16.
Ecol Lett ; 20(6): 741-750, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28444870

RESUMO

The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration.


Assuntos
Migração Animal , Cervos , Herbivoria , Animais , Ecossistema , Estações do Ano
17.
Ecol Lett ; 20(1): 33-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27873440

RESUMO

While collective decision-making is recognised as a significant contributor to fitness in social species, the opposite outcome is also logically possible. We show that collective movement decisions guided by individual bison sharing faulty information about habitat quality promoted the use of ecological traps. The frequent, but short-lived, associations of bison with different spatial knowledge led to a population-wide shift from avoidance to selection of agricultural patches over 9 years in and around Prince Albert National Park, Canada. Bison were more likely to travel to an agricultural patch for the first time by following conspecifics already familiar with agricultural patches. Annual adult mortality increased by 12% due to hunting of bison on agricultural lands. Maladaptive social behaviour accordingly was a major force that contributed to a ~50% population decline in less than a decade. In human-altered landscapes, social learning by group-living species can lead to fitness losses, particularly in fusion-fission societies.


Assuntos
Bison/fisiologia , Tomada de Decisões , Aptidão Genética , Comportamento Social , Animais , Bison/genética , Ecossistema , Feminino , Dinâmica Populacional , Saskatchewan
18.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335416

RESUMO

The green wave hypothesis (GWH) states that migrating animals should track or 'surf' high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1-3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG-supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.


Assuntos
Ecossistema , Herbivoria , Estações do Ano , Migração Animal , Animais , Bison , Cervos , Plantas , Ovinos , Análise Espaço-Temporal
19.
Ecol Lett ; 18(8): 799-806, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26013202

RESUMO

When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break-ups, and are therefore a fundamental driver of fusion-fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion-fission dynamics. Using movement data from GPS-collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group - a tactic that led to energy-rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion-fission dynamics and play an essential role in animal distribution.


Assuntos
Comportamento Animal , Bison/fisiologia , Comportamento de Escolha , Comportamento Social , Animais , Evolução Biológica , Canadá , Meio Ambiente , Comportamento Alimentar , Modelos Biológicos , Seleção Genética
20.
Ecology ; 96(7): 1793-801, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26378302

RESUMO

Foraging strategies based on site fidelity and maximization of energy intake rate are two adaptive forces shaping animal behavior. Whereas these strategies can both be evolutionarily stable, they predict conflicting optimal behaviors when population abundance is in decline. In such a case, foragers employing an energy-maximizing strategy should reduce their use of low-quality patches as interference competition becomes less intense for high-quality patches. Foragers using a site fidelity strategy, however, should continue to use familiar patches. Because natural fluctuations in population abundance provide the only non-manipulative opportunity to evaluate adaptation to these evolutionary forces, few studies have examined these foraging strategies simultaneously. Using abundance and space use data from a free-ranging bison (Bison bison) population living in a meadow-forest matrix in Prince Albert National Park, Canada, we determined how individuals balance the trade-off between site fidelity and energy-maximizing patch choice strategies with respect to changes in population abundance. From 1996 to 2005, bison abundance increased from 225 to 475 and then decreased to 225 by 2013. During the period of population increase, population range size increased. This expansion involved the addition of relatively less profitable areas and patches, leading to a decrease in the mean expected profitability of the range. Yet, during the period of population decline, we detected neither a subsequent retraction in population range size nor an increase in mean expected profitability of the range. Further, patch selection models. during the population decline indicated that, as density decreased, bison portrayed stronger fidelity to previously visited meadows, but no increase in selection strength for profitable meadows. Our analysis reveals that an energy-maximizing patch choice strategy alone cannot explain the distribution ofindividuals and populations, and site fidelity is an important evolutionary force shaping animal distribution. Animals may not always forage in the richest patches available, as ecological theory would often predict, but their use of profitable patches is dependent on population dynamics and the strength of site fidelity. Our findings are likewise relevant to applied inquiries such as forecasting species range shifts and reducing human-wildlife conflicts.


Assuntos
Bison/fisiologia , Ecossistema , Animais , Monitoramento Ambiental , Densidade Demográfica , Saskatchewan , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA