Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 17537-17546, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381484

RESUMO

We report an experimental approach to produce spatially localized photoinduced superconducting state in a cuprate superconductor using optical vortices with ultrafast pulses. The measurements were carried out using coaxially aligned three-pulse time-resolved spectroscopy, in which an intense vortex pulse was used for coherent quenching of superconductivity and the resulting spatially modulated metastable states were analyzed by the pump-probe spectroscopy. The transient response after quenching shows a spatially localized superconducting state that remains unquenched at the dark core of the vortex beam for a few picoseconds. Because the quenching is instantaneously driven by photoexcited quasiparticles, the vortex beam profile can be transferred directly to the electron system. By using the optical vortex-induced superconductor, we demonstrate spatially resolved imaging of the superconducting response and show that the spatial resolution can be improved using the same principle as that of super-resolution microscopy for fluorescent molecules. The demonstration of spatially controlled photoinduced superconductivity is significant for establishing a new method for exploring novel photoinduced phenomena and applications in ultrafast optical devices.

2.
Nat Commun ; 12(1): 2323, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875669

RESUMO

Metastable self-organized electronic states in quantum materials are of fundamental importance, displaying emergent dynamical properties that may be used in new generations of sensors and memory devices. Such states are typically formed through phase transitions under non-equilibrium conditions and the final state is reached through processes that span a large range of timescales. Conventionally, phase diagrams of materials are thought of as static, without temporal evolution. However, many functional properties of materials arise as a result of complex temporal changes in the material occurring on different timescales. Hitherto, such properties were not considered within the context of a temporally-evolving phase diagram, even though, under non-equilibrium conditions, different phases typically evolve on different timescales. Here, by using time-resolved optical techniques and femtosecond-pulse-excited scanning tunneling microscopy (STM), we track the evolution of the metastable states in a material that has been of wide recent interest, the quasi-two-dimensional dichalcogenide 1T-TaS2. We map out its temporal phase diagram using the photon density and temperature as control parameters on timescales ranging from 10-12 to 103 s. The introduction of a time-domain axis in the phase diagram enables us to follow the evolution of metastable emergent states created by different phase transition mechanisms on different timescales, thus enabling comparison with theoretical predictions of the phase diagram, and opening the way to understanding of the complex ordering processes in metastable materials.

3.
Sci Adv ; 1(6): e1500168, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601218

RESUMO

Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.

4.
Phys Rev Lett ; 93(21): 218101, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15601065

RESUMO

We report on a study of the interactions between holes and molecular vibrations on dry DNA using photoinduced infrared absorption spectroscopy. Laser photoexcited holes are found to have a room-temperature lifetime in excess of tau > 1 ms, clearly indicating the presence of localization. However, from a quantitative model analysis of the frequency shifts of vibrational modes caused by the holes, we find the hole-vibrational coupling constant to be relatively small, lambda approximately 0.2. This interaction leads to a change in the conformational energy of DeltaE0 approximately 0.015 eV, which is too small to cause self-trapping at room temperature. We conclude that, at least in the dry (A) form, DNA is best understood in terms of a double chain of coupled quantum dots arising from the pseudorandom chain sequence of base pairs, in which Anderson localization prevents the formation of a metallic state.


Assuntos
DNA/química , Fotoquímica , Espectrofotometria Infravermelho/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA